光谱学与光谱分析, 2023, 43 (12): 3682, 网络出版: 2024-01-11  

针环式电极大气压下氩气等离子体射流长度影响因素研究

Study of Factors Influencing the Length of Argon Plasma Jets at Atmospheric Pressure With Needle Ring Electrodes
作者单位
1 中煤科工集团沈阳研究院有限公司煤矿安全技术国家重点实验室, 沈抚示范区, 辽宁 沈阳 113122
2 沈阳航空航天大学航空发动机学院, 辽宁 沈阳 110136
摘要
为掌握反应器结构参数和放电参数对大气压非平衡等离子体射流(N-APPJ)的射流长度的定量影响, 设计了多结构的针-环式电极氩气等离子体射流装置, 分别研究了放电电压、 电极间隙、 高压电极放电末端与接地电极的距离及氩气体积流量对射流长度的影响, 并采用发生光谱法对该反应器产生的等离子体电子激发温度进行了计算。 结果表明: 等离子体射流的最大长度可达80 mm; 高压电极放电末端与接地电极之间的距离越大, 射流长度越长但不是线性增长; 射流长度随电极间隙的增加呈现先增大后减小的趋势且在电极间隙为4.5 mm时该射流达到最大长度; 随着氩气体积流量的增加, 等离子体射流长度也呈现出先增大后减小的趋势且减小的幅度较低; 电子激发温度在高压电极和接地电极处较高, 两电极之间部分次之, 在石英管出口处会有比较明显的下降。
Abstract
A multi-structure needle-ring electrode argon plasma jet device was designed to grasp the quantitative influence of the reactor structure parameters and discharge parameters on the jet length of the atmospheric pressure non-equilibrium plasma jet (N-APPJ). The effects of discharge voltage, electrode gap, the distance between the discharge end of the high-voltage electrode and the ground electrode, and the volume flow of argon on the jet length were calculated. The results show that the maximum length of the plasma jet can reach 80mm; the longer the distance between the discharge end of the high voltage electrode and the ground electrode, the longer the jet length but not linearly; the jet length first increases and then decreases with the increase of the electrode gap, and the jet reaches the maximum length when the electrode gap is 4.5 mm; with the increase of the volume flow of argon, the length of the plasma jet also shows a trend of first increasing and then decreasing, and the decreasing amplitude is low; the electron excitation temperature It is higher at the high-voltage electrode and the ground electrode, and the part between the two electrodes is second, and there will be a more obvious drop at the outlet of the quartz tube.
参考文献

[1] HU Jian-hang, FANG Zhi, ZHANG Cheng, et al(胡建航, 方 志, 章 程, 等). Materials Reports(材料导报), 2007, 21(9): 71.

[2] Teschke M, Kedzierski J, Finantu-Dinu E G, et al. IEEE Transactions on Plasma Science, 2005, 33(2): 310.

[3] Kedzierski J, Engemann J, Teschke M, et al. Solid State Phenomena, 2005, 107: 119.

[4] Lu X P, Laroussia M. Journal of Applied Physics, 2006, 100: 063302.

[5] Park H S, Kim S J, Joh H M, et al. Physics of Plasma, 2010, 17: 33502.

[6] Yong C H, Soon C, Jong H K, et al. Physics of Plasmas, 2007, 14: 074502.

[7] LI Xue-chen, CHEN Jun-yu, JIA Peng-ying, et al(李雪辰, 陈俊宇, 贾鹏英, 等). Journal of Hebei University(Natural Science Edition)[河北大学学报(自然科学版)], 2021, 41(5): 495.

[8] Schbatzadeh F, Omran A V. Physics of Plasmas, 2014, 21: 113510.

[9] SONG Fei-long, JIN Di, JIA Min, et al(宋飞龙, 金 迪, 贾 敏, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2018, 38(6): 1675.

[10] LIN De-feng, LUO Shu-hao, LIAO Guang-fan, et al(林德锋, 罗书豪, 廖广凡, 等). Sichuan Electric Power Technology(四川电力技术), 2015, 38(5): 56.

[11] J A M van der Mullen. Physics Reports, 1990, 191(2-3): 109.

[12] YE Chao(叶 超). Principle and Technology of Low Temperature Plasma Diagnosis(低温等离子体诊断原理与技术). Beijing: Science Press(北京: 科学出版社), 2021. 6.

[13] GE Yuan-jing, ZHANG Guang-qiu, CHEN Qiang(葛袁静, 张广秋, 陈 强). Plasma Science and Technology and Its Application in Industry(等离子体科学技术及其在工业中的应用). Beijing: China Light Industry Press(北京: 中国轻工业出版社), 2011. 1.

田富超, 陈雷, 裴欢, 白洁琪, 曾文. 针环式电极大气压下氩气等离子体射流长度影响因素研究[J]. 光谱学与光谱分析, 2023, 43(12): 3682. TIAN Fu-chao, CHEN Lei, PEI Huan, BAI Jie-qi, ZENG Wen. Study of Factors Influencing the Length of Argon Plasma Jets at Atmospheric Pressure With Needle Ring Electrodes[J]. Spectroscopy and Spectral Analysis, 2023, 43(12): 3682.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!