作者单位
摘要
1 上海理工大学 机械工程学院,上海 200093
2 上海健康医学院 上海市分子影像学重点实验室,上海 201318
介质阻挡放电 (DBD) 在工业中得到广泛应用,但效率限制了它的进一步应用。提出了一种DBD结构和针板结构相结合的三电极结构。将正极性脉冲电源施加在DBD电极上,负极性脉冲电源施加到针板电极上。分析了不同结构下三电极DBD的放电特性、现象和光谱强度。结果表明,三电极结构更加有利于DBD放电通道的产生,其放电均匀性、发光强度均强于双电极DBD,特别是在丝网接地电极条件下,放电更加强烈。当三种电极结构正极性电压维持在11 kV,负极性电压为−5 kV时,丝网接地三电极中DBD的放电电流峰值达到1.54 A,而实心接地三电极和传统双电极中DBD的放电电流峰值为1.14 A和0.74 A。在负极性脉冲维持期间,针网间隙处于击穿状态,DBD放电出现很大的放电电流。在三电极结构中,随着施加在针板上负极性电压的升高也使三电极DBD放电更加强烈。不同结构下的DBD的放电光谱表明在丝网接地时三电极DBD激发粒子的光谱强度最强。这一趋势与DBD放电电流和功率一致。
介质阻挡放电 三电极结构 放电特性 发射光谱 dielectric barrier discharge three electrode structure discharge characteristics emission spectrum 
强激光与粒子束
2024, 36(2): 025008
作者单位
摘要
1 中煤科工集团沈阳研究院有限公司煤矿安全技术国家重点实验室, 沈抚示范区, 辽宁 沈阳 113122
2 沈阳航空航天大学航空发动机学院, 辽宁 沈阳 110136
在等离子体射流的辅助下, 液体的雾化特性能够得到一定程度的改善, 等离子体辅助雾化具备应用于超细水雾抑制瓦斯爆炸领域的潜力。 然而, 由于等离子体射流中存在的多种活性粒子对于燃烧存在促进作用, 因此有必要对瓦斯气体存在的条件下等离子体中的活性粒子种类进行定量分析。 在大气压下开展了以氦气作为载气对预混的甲烷和空气进行介质阻挡(DBD)放电研究。 结果表明, 等离子体射流中的主要活性粒子为OH基团、 N2的第二正带系、 CH基团、 HeI原子以及少量的O原子, 其中甲烷电离区的谱线主要集中在400~600 nm。 增大峰值电压和氦气掺混体积流量比都可以有效提高等射流中活性基团的含量。 采用N2第二正带系的连续谱带做最小二乘线性拟合, 对等离子体射流的振动温度进行了计算, 得到大气压氦气/空气-甲烷等离子体射流的振动温度在2 000~4 000 K之间。 随着峰值电压和氦气掺混比的增大, 振动温度都呈现增大趋势。 利用HeI原子激发能差较大的5条谱线做最小二乘线性拟合, 对等离子体射流的电子激发温度进行了计算, 得到大气压氦气/空气-甲烷等离子体射流的电子激发温度在3 500~13 000 K之间。 随峰值电压的增大, 电子激发温度表现出增大的变化趋势, 随着氦气掺混比的增大, 电子激发温度表现出减小的变化趋势, 分析发现随着氦气体积流量的增大, 使得射流发生器内的气流变快, 带走了发生器内更多的热量, 导致电子激发温度下降。
介质阻挡放电 发射光谱 电子激发温度 振动温度 Dielectric barrier discharge Emission spectroscopy Electronic excitation temperature Vibration temperature 
光谱学与光谱分析
2023, 43(9): 2694
作者单位
摘要
1 中煤科工集团沈阳研究院有限公司煤矿安全技术国家重点实验室, 沈抚示范区, 辽宁 沈阳 113122
2 沈阳航空航天大学航空发动机学院, 辽宁 沈阳 110136
为掌握反应器结构参数和放电参数对大气压非平衡等离子体射流(N-APPJ)的射流长度的定量影响, 设计了多结构的针-环式电极氩气等离子体射流装置, 分别研究了放电电压、 电极间隙、 高压电极放电末端与接地电极的距离及氩气体积流量对射流长度的影响, 并采用发生光谱法对该反应器产生的等离子体电子激发温度进行了计算。 结果表明: 等离子体射流的最大长度可达80 mm; 高压电极放电末端与接地电极之间的距离越大, 射流长度越长但不是线性增长; 射流长度随电极间隙的增加呈现先增大后减小的趋势且在电极间隙为4.5 mm时该射流达到最大长度; 随着氩气体积流量的增加, 等离子体射流长度也呈现出先增大后减小的趋势且减小的幅度较低; 电子激发温度在高压电极和接地电极处较高, 两电极之间部分次之, 在石英管出口处会有比较明显的下降。
大气压等离子体射流 介质阻挡放电 射流长度 电极结构参数 Atmospheric pressure plasma jet Dielectric barrier discharge Jet length Electrode structure parameters 
光谱学与光谱分析
2023, 43(12): 3682
作者单位
摘要
1 南京工业大学浦江学院南京 211134
2 南京瑞洁特膜分离科技有限公司南京 210008
利用介质阻挡放电低温等离子体技术对甲基红模拟染料废水进行降解研究,降解反应在同心管式反应器中进行。考察了放电功率、溶液初始浓度、初始pH、处理时间、气氛条件等单因素的改变对甲基红降解效果的影响,通过测定甲基红521 nm处的吸光度值、溶液pH及颜色变化,分析了甲基红降解历程,并推测了降解机理。研究结果表明:在本实验中,溶液在115 W低放电功率下的处理效果更好,由于处理效果受温度、湿度等影响,放电功率与处理效果间并不呈正相关关系;溶液的初始浓度越高,达到同样的降解效果所需的时间越长;相同条件下,模拟废水的初始pH越低,其处理后的降解效果越好,即酸性条件下更有利于甲基红断键降解。
低温等离子体 介质阻挡放电 染料废水 甲基红 降解 Low temperature plasma Dielectric barrier discharge Dye wastewater Methyl red Degradation 
辐射研究与辐射工艺学报
2023, 41(4): 040205
作者单位
摘要
河北大学物理科学与技术学院,河北 保定 071002
利用独特设计的阵列-液体电极介质阻挡放电装置,率先获得了Lieb晶格等离子体光子晶体,并实现了其基元大小、形状和微观形貌的多自由度原位调控。采用光电倍增管对Lieb晶格等离子体光子晶体的时空动力学行为进行了时空分辨测量。基于有限元计算,对不同基元结构的Lieb晶格等离子体光子晶体的色散关系和能带变化规律进行了系统研究。结果表明:Lieb晶格等离子体光子晶体由两套不同四方子晶格相互嵌套形成,具有优异的时空稳定性和周期性;随着Lieb晶格基元构型的改变,光子带隙发生显著变化,形成了偶然简并的类狄拉克锥结构,以及不同频段的完全带隙和非完全带隙;基元的几何形状对光子带隙数目、位置和宽度均具有重要影响。
材料 光子带隙材料 介质阻挡放电 等离子体光子晶体 Lieb晶格 基元形貌 
光学学报
2023, 43(4): 0416001
作者单位
摘要
1 沈阳航空航天大学航空发动机学院, 辽宁 沈阳 110136
2 大连民族大学机电工程学院, 辽宁 大连 116605
对未燃烧的可燃混合气体进行DBD放电, 放电后会产生大量的活性粒子, 这些活性粒子可以辅助气体燃烧, 达到提高燃料燃烧利用率等目的。 以DBD激励氩气、 甲烷、 空气产生的自由基(CH基和OH基)等强化燃烧的关键活性粒子为探索对象, 研究DBD放电激励甲烷对滑动弧火焰的影响。 为此, 采用自主设计的DBD-滑动弧双模式等离子体激励器, 利用同轴介质阻挡放电结构对氩气、 甲烷、 空气混合气进行放电激励, 将激励后的氩气、 甲烷、 空气混合气通入滑动弧端进行点火。 固定氩气流量不变, 调整空气流量为4.76 L·min-1, 并加入甲烷0.5 L·min-1, 保证进气通道内氩气与空气-甲烷的气体体积流量比达到Ar∶(CH4+Air)=1∶30, 其中空气、 甲烷这两种气体达到了化学燃烧当量比φ=1, 氩气、 甲烷、 甲烷混合气体能实现均匀而稳定的放电并燃烧。 DBD段放电电压在15~20 kV范围变化, 放电频率在6~10 kHz范围变化, 滑动弧段的电压和频率分别保持4 kV与10 kHz恒定, 通过改变DBD段放电电压和放电频率, 用高速光纤光谱仪检测滑动弧火焰中自由基种类及其光谱强度, 分析放电参数激励甲烷对火焰中自由基(CH基和OH基)的影响。 结果表明, DBD段放电电压及放电频率的增加可以促进火焰内部的偶联反应发生, 可有效提升甲烷滑动弧火焰内部的活性粒子含量, 其中OH基团、 CH基团在燃烧链式化学反应进程中发挥着较为重要的作用。 甲烷经过DBD激励后, 随放电电压和频率的增加, 火焰中OH基、 CH基等主要活性粒子都随之增加。 DBD放电后, 活性粒子的光谱强度增大, 特征谱线比单模式更加明显; 甲烷经过DBD激励后, 火焰组成发生了变化, 滑动弧段出口处甲烷燃烧反应更加充分, 火焰温度越高越容易产生OH基。 与单模式滑动弧相比, 双模式放电可有效促进火焰内部的链式化学反应进程, 促进燃料燃烧。
双模式放电 滑动弧放电 介质阻挡放电 火焰光谱 等离子体 Dual mode discharge Gliding arc discharge Dielectric barrier discharge Flame spectrum Plasma 
光谱学与光谱分析
2022, 42(7): 2007
作者单位
摘要
河北大学物理科学与技术学院,河北 保定 071002
采用液体电极介质阻挡放电装置,对不同填充比环形等离子体光子晶体(APPCs)进行了系统研究。实现了等离子体柱半径动态可调、时空高度对称的APPCs,并能有效调控其基元微结构。基于实验结果,利用二维有限元计算,研究了不同APPCs的色散关系,分析了等离子体柱半径对能带位置和带隙宽度的影响。结果表明,随等离子体柱半径增大,能带结构由不完全带隙转化为完全带隙,带隙宽度随之增大。环形结构基元的设计使等离子体光子晶体(PPCs)具有易于实现宽带隙能带结构的优异特性,其形成完全带隙的等离子体柱半径阈值显著低于常规PPCs。在相同等离子体柱半径下,APPCs的带隙宽度明显大于常规PPCs。提出的等离子体填充比可调的APPCs,为能带结构的优化设计提供了更多可能,同时为设计新型可调谐光子晶体以及开发宽带隙、高度集成光子器件带来启示。
光学器件 介质阻挡放电 环形等离子体光子晶体 能带结构 填充比 
激光与光电子学进展
2022, 59(13): 1323002
作者单位
摘要
上海理工大学 机械工程学院,上海 200093
设计了一种基于Marx电路的方波脉冲电源,该电源采用磁环隔离驱动方案与全桥Marx电路相结合,实现了正极性、负极性和双极性高压方波脉冲的输出,解决了常规脉冲电源只能输出特定极性脉冲的限制。对电路的运行模式经行了理论分析,并搭建了16级实验样机。实验结果表明:在空载条件下,实现了频率1 kHz,幅值10 kV的正极性、负极性及双极性高压方波脉冲输出。其最小脉宽1 µs,极性可调。该脉冲电源结构紧凑,可以实现输出电压、脉宽、脉冲极性可调。最后使用该方波脉冲电源驱动平行板介质阻挡放电反应器。结果表明:该方波脉冲电源可以作为介质阻挡放电驱动源。
方波 脉冲电源 脉冲功率技术 脉冲极性 介质阻挡放电 rectangular pulse pulse generator pulse power technology pulse polarity dielectric barrier discharge 
强激光与粒子束
2022, 34(5): 055001
作者单位
摘要
上海理工大学 机械工程学院,上海 200093
提出一种基于谐振电路与脉冲变压器结合的高压脉冲实现方案,该方案利用电容与电感的谐振效应,结合脉冲变压器的升压作用,在仅使用一个半导体开关的条件下,实现高压脉冲的输出,其结构简单,成本低,并且可实现零电压关断。并对于电路的运行模式进行了理论分析,搭建了原理样机进行实验。容性负载条件下,实现频率1~ 15 kHz、幅值0~ 10 kV可调的高压脉冲输出,对比分析了续流支路以及续流电阻对于输出高压脉冲波形的影响。利用该脉冲电源进行DBD放电实验,成功驱动介质阻挡放电反应器,验证了该方案的可行性。
谐振电路 脉冲电源 脉冲变压器 介质阻挡放电 resonant circuit pulse generator pulsed transformer dielectric barrier discharge 
强激光与粒子束
2022, 34(4): 045002
作者单位
摘要
辽宁师范大学物理与电子技术学院, 辽宁 大连 116029
以聚对苯二甲酸乙二醇酯作为介质, 在大气压下产生氦氩混合气体放电等离子体。 利用电压电流探头、 数字示波器和数码相机研究了聚对苯二甲酸乙二醇酯介质阻挡氦氩混合气体放电的电学特性和发光特性。 发现随氩气含量增加, 每半个电压周期出现一个或多个电流脉冲, 放电由均匀放电转变为斑图放电。 利用衍射光栅和CCD探测器组成的光谱系统测量了氩原子谱线(696.54, 763.13, 772.09, 811.17和911.81 nm)光谱强度。 研究了氩气含量、 峰值电压对氩原子谱线光谱强度的影响。 实验结果表明: 在峰值电压较低时, 上述五条氩原子谱线光谱强度随氩气含量的增加均呈现先增强—后减弱—再增强的变化规律; 在峰值电压较高时, 波长为696.54, 763.13和772.09 nm三条谱线光谱强度增强, 波长为811.17和911.81 nm谱线光谱强度减弱。 上述情况表明: 在低峰值电压下, 上述五条氩原子谱线光谱强度的变化规律是由于在放电过程中放电模式发生了变化; 而在髙峰值电压下, 五条谱线强度变化与气体激发机制有关。 在氩气含量低于30%或高于80%时, 氩原子谱线光谱强度随峰值电压的增加先保持不变, 再增强到稳定值; 在氩气含量介于30%~80%之间时, 氩原子谱线光谱强度随峰值电压的增加也呈现先增强—后减弱—再增强的变化规律; 利用玻尔兹曼图形法计算了氩原子放电的电子激发温度, 得到了不同峰值电压下电子激发温度随氦气/氩气比例变化的规律: 高峰值电压下电子激发温度明显高于低峰值电压下电子激发温度; 电子激发温度随氩气含量增加而减小。 出现上述变化规律的原因主要是由于电子与氦原子碰撞截面小, 电子与氩原子碰撞截面大, 而氦气扩散系数大于氩气扩散系数。
介质阻挡放电 氩气含量 光谱强度 电子激发温度 Dielectric barrier discharge Argon content Spectra intensity Electron excitation temperature 
光谱学与光谱分析
2021, 41(11): 3602

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!