作者单位
摘要
1 中煤科工集团沈阳研究院有限公司煤矿安全技术国家重点实验室, 沈抚示范区, 辽宁 沈阳 113122
2 沈阳航空航天大学航空发动机学院, 辽宁 沈阳 110136
在等离子体射流的辅助下, 液体的雾化特性能够得到一定程度的改善, 等离子体辅助雾化具备应用于超细水雾抑制瓦斯爆炸领域的潜力。 然而, 由于等离子体射流中存在的多种活性粒子对于燃烧存在促进作用, 因此有必要对瓦斯气体存在的条件下等离子体中的活性粒子种类进行定量分析。 在大气压下开展了以氦气作为载气对预混的甲烷和空气进行介质阻挡(DBD)放电研究。 结果表明, 等离子体射流中的主要活性粒子为OH基团、 N2的第二正带系、 CH基团、 HeI原子以及少量的O原子, 其中甲烷电离区的谱线主要集中在400~600 nm。 增大峰值电压和氦气掺混体积流量比都可以有效提高等射流中活性基团的含量。 采用N2第二正带系的连续谱带做最小二乘线性拟合, 对等离子体射流的振动温度进行了计算, 得到大气压氦气/空气-甲烷等离子体射流的振动温度在2 000~4 000 K之间。 随着峰值电压和氦气掺混比的增大, 振动温度都呈现增大趋势。 利用HeI原子激发能差较大的5条谱线做最小二乘线性拟合, 对等离子体射流的电子激发温度进行了计算, 得到大气压氦气/空气-甲烷等离子体射流的电子激发温度在3 500~13 000 K之间。 随峰值电压的增大, 电子激发温度表现出增大的变化趋势, 随着氦气掺混比的增大, 电子激发温度表现出减小的变化趋势, 分析发现随着氦气体积流量的增大, 使得射流发生器内的气流变快, 带走了发生器内更多的热量, 导致电子激发温度下降。
介质阻挡放电 发射光谱 电子激发温度 振动温度 Dielectric barrier discharge Emission spectroscopy Electronic excitation temperature Vibration temperature 
光谱学与光谱分析
2023, 43(9): 2694
作者单位
摘要
上海理工大学脉冲功率实验室, 上海 200082
通过自主设计正极性Marx纳秒脉冲电源, 在不同放电频率、 不同电源电压幅值下, 采用发射光谱在真空环境下对氩气放电时的电子激发温度和电子密度进行测量计算。 通过双谱线法选取合适的Ar原子谱线, 求得电子激发温度在1 550~3 400 K之间, 在正极性脉冲电源做电压源, 且电源电压一定时, 电子激发温度随着电源频率的升高而呈现上升趋势, 在电源频率一定时, 电子激发温度也随着电源电压的增加而升高。 依据Stark展宽原理对真空体积介质阻挡放电时的电子密度进行了测量计算。 电子密度的数量级可达1013 m-3, 当电源电压不变时, 电子密度随电源频率的增加呈现上升趋势, 当电源频率不变, 电子密度随着电源电压的升高也逐渐提升。
真空介质阻挡放电 发射光谱 电子激发温度 电子密度 Vacuum DBD Emission spectrum Electron excitation temperature Electron density 
光谱学与光谱分析
2023, 43(2): 455
作者单位
摘要
辽宁师范大学物理与电子技术学院, 辽宁 大连 116029
以聚对苯二甲酸乙二醇酯作为介质, 在大气压下产生氦氩混合气体放电等离子体。 利用电压电流探头、 数字示波器和数码相机研究了聚对苯二甲酸乙二醇酯介质阻挡氦氩混合气体放电的电学特性和发光特性。 发现随氩气含量增加, 每半个电压周期出现一个或多个电流脉冲, 放电由均匀放电转变为斑图放电。 利用衍射光栅和CCD探测器组成的光谱系统测量了氩原子谱线(696.54, 763.13, 772.09, 811.17和911.81 nm)光谱强度。 研究了氩气含量、 峰值电压对氩原子谱线光谱强度的影响。 实验结果表明: 在峰值电压较低时, 上述五条氩原子谱线光谱强度随氩气含量的增加均呈现先增强—后减弱—再增强的变化规律; 在峰值电压较高时, 波长为696.54, 763.13和772.09 nm三条谱线光谱强度增强, 波长为811.17和911.81 nm谱线光谱强度减弱。 上述情况表明: 在低峰值电压下, 上述五条氩原子谱线光谱强度的变化规律是由于在放电过程中放电模式发生了变化; 而在髙峰值电压下, 五条谱线强度变化与气体激发机制有关。 在氩气含量低于30%或高于80%时, 氩原子谱线光谱强度随峰值电压的增加先保持不变, 再增强到稳定值; 在氩气含量介于30%~80%之间时, 氩原子谱线光谱强度随峰值电压的增加也呈现先增强—后减弱—再增强的变化规律; 利用玻尔兹曼图形法计算了氩原子放电的电子激发温度, 得到了不同峰值电压下电子激发温度随氦气/氩气比例变化的规律: 高峰值电压下电子激发温度明显高于低峰值电压下电子激发温度; 电子激发温度随氩气含量增加而减小。 出现上述变化规律的原因主要是由于电子与氦原子碰撞截面小, 电子与氩原子碰撞截面大, 而氦气扩散系数大于氩气扩散系数。
介质阻挡放电 氩气含量 光谱强度 电子激发温度 Dielectric barrier discharge Argon content Spectra intensity Electron excitation temperature 
光谱学与光谱分析
2021, 41(11): 3602
李政楷 1,*陈雷 1王美琪 1宋鹏 2[ ... ]曾文 1
作者单位
摘要
1 沈阳航空航天大学航空发动机学院, 辽宁 沈阳 110136
2 大连理工大学能源与动力学院, 辽宁 大连 116024
为了更加深入地了解氩气/空气等离子体射流内的电子输运过程及化学反应过程, 通过针-环式介质阻挡等离子体发生器在放电频率10 kHz, 一个大气压条件下对氩气/空气混合气进行电离并产生了稳定的等离子体射流。 通过发射光谱法对不同峰值电压下氩气/空气等离子体射流的活性粒子种类、 电子激发温度及振动温度进行了诊断。 结果表明, 射流中的主要活性粒子为N2的第二正带系、 Ar Ⅰ原子以及少量的氧原子, 其中N2的第二正带系的相对光谱强度最强、 最清晰, 在本试验的发射光谱中没有发现$N^{+}_{2}$的第一负带系谱线, 这说明在氩气/空气等离子体射流中几乎没有电子能量高于18.76 eV的自由电子。 利用Ar Ⅰ原子激发能差较大的5条谱线做最小二乘线性拟合对等离子体射流的电子激发温度进行了计算, 得到大气压氩气/空气等离子体射流的电子激发温度在7 000~11 000 K之间。 随峰值电压的增大, 电子激发温度表现出先增大后减小的变化趋势, 这说明电子激发温度并不总是随峰值电压的增长单调变化的。 通过N2的第二正带系对等离子体振动温度进行了诊断, 发现大气压氩气/空气等离子体射流振动温度在3 000~4 500 K之间, 其随峰值电压的增大而减小, 这意味着虽然峰值电压的提高可有效提高自由电子的动能, 但当电子动能较大时自由电子与氮分子之间的相互作用时间将会缩短, 进而二者之间的碰撞能量转移截面将会减小, 从而导致等离子体振动温度的降低。
介质阻挡放电 发射光谱法 电子激发温度 振动温度 Dielectric barrier discharge Emission spectrometry Electronic excitation temperature Vibration temperature 
光谱学与光谱分析
2021, 41(10): 3307
宋鹏 1,2李政楷 3陈雷 3王晓放 1[ ... ]曾文 3
作者单位
摘要
1 大连理工大学能源与动力学院, 辽宁 大连 116024
2 大连民族大学机电工程学院, 辽宁 大连 116605
3 沈阳航空航天大学航空发动机学院, 辽宁 沈阳 110136
为了加快低温氦气等离子体射流的工程化进程, 通过自主设计的同轴式介质阻挡放电等离子体射流发生器, 在放电频率10 kHz, 一个大气压条件下产生了稳定的氦气等离子体射流。 通过分析不同工况下的电压电流波形可以发现单纯增加氦气体积流量只能小幅的增加电流脉冲幅值, 而对放电时间、 电流脉冲数的影响不大。 增加放电峰值电压时电流脉冲幅值会得到较大幅度增加。 通过发射光谱法对大气压氦气等离子射流的活性粒子种类、 电子激发温度、 电子密度进行了诊断。 结果表明, 大气压氦气等离子体射流中的主要活性粒子为He Ⅰ原子、 N2第二正带系、 N+2的第一负带系、 羟基(OH), H原子的巴尔末线系(Hα和Hβ)与O原子, 这表明虽然该试验中使用的氦气纯度已达99.99%, 但其中仍残留有少量的空气, 同时放电时大气中的空气会被卷吸到放电空间发生电离。 还可以发现, 主要活性粒子的相对光谱强度随氦气体积流量的增加及放电峰值电压的增大均呈现上涨的趋势。 选用He Ⅰ原子的的四条谱线对不同试验工况下的电子激发温度进行了计算, 得到大气压氦气等离子体射流的电子激发温度在3 500~6 300 K之间, 电子激发温度随放电峰值电压与氦气体积流量的增大总体上呈现上升的趋势。 但由于反向电场的存在, 某些峰值电压可能会出现电子激发温度下降的情况; 根据Stark展宽原理对大气压氦气等离子体射流的电子密度进行了计算, 发现电子密度的数量级可达1015 cm-3, 同时增大峰值电压与氦气体积流量均可有效的提高射流中的电子密度。 这些参数的研究对氦气等离子体射流在工程实际中的应用具有重要意义。
大气压 氦气介质阻挡放电 发射光谱法 电子激发温度 电子密度 Atmospheric pressure Heliumdielectric barrier discharge Emission spectroscopy Electron excitation temperature Electron density 
光谱学与光谱分析
2021, 41(6): 1874
李政楷 1,*陈雷 1杨聪 1宋鹏 2,3[ ... ]庞钧译 1
作者单位
摘要
1 沈阳航空航天大学航空发动机学院, 辽宁 沈阳 110136
2 大连民族大学机电信息工程学院, 辽宁 大连 116600
3 大连理工大学内燃机研究所, 辽宁 大连 116024
为了更加深入的研究大气压条件下Ar/CH4等离子体射流的放电机理和其内部电子的状态, 通过自主设计的针-环式介质阻挡放电结构, 在放电频率10 kHz、 一个大气压条件下产生了稳定的Ar/CH4等离子体射流, 并利用发射光谱法对其进行了诊断研究。 对大气条件下Ar/CH4等离子体射流的放电现象及内部活性粒子种类进行诊断分析, 重点研究了不同氩气甲烷体积流量比、 不同峰值电压对大气压Ar/CH4等离子体射流电子激发温度、 电子密度以及CH基团活性粒子浓度的影响规律。 结果表明, 大气压条件下Ar/CH4等离子体射流呈淡蓝色, 在射流边缘可观察到丝状毛刺并伴有刺耳的电离声同时发现射流尖端的形态波动较大; 通过发射光谱可以发现Ar/CH4等离子体射流中的主要活性粒子为CH基团, C, CⅡ, CⅢ, CⅣ, ArⅠ和ArⅡ, 其中含碳粒子的谱线主要集中在400~600 nm之间, ArⅠ和ArⅡ的谱线分布在680~800 nm之间; 可以发现CH基团的浓度随峰值电压的增大而增大, 但CH基团浓度随Ar/CH4体积流量比的增大而减小, 同时Ar/CH4等离子体射流中C原子的浓度随之增加, 这表明氩气甲烷体积流量比的增大加速了Ar/CH4等离子体射流中C—H的断裂, 因此可以发现增大峰值电压与氩气甲烷体积流量比均可明显的加快甲烷分子的脱氢效率, 但增大氩气甲烷体积流量比的脱氢效果更加明显。 通过多谱线斜率法选取4条ArⅠ谱线计算了不同工况下的电子激发温度, 求得大气压Ar/CH4等离子体射流的电子激发温度在6 000~12 000 K之间, 且随峰值电压与氩气甲烷体积流量比的增大均呈现上升的趋势; 依据Stark展宽机理对Ar/CH4等离子体射流的电子密度进行了计算, 电子密度的数量级可达1017 cm-3, 且增大峰值电压与氩气甲烷体积流量比均可有效的提高射流中的电子密度。 这些参数的探索对大气压等离子体射流的研讨具有重大意义。
大气压 介质阻挡放电 原子发射光谱法 电子激发温度 电子密度 Atmospheric pressure Dielectric barrier discharge Emission spectroscopy Electron excitation temperature Electron density 
光谱学与光谱分析
2021, 41(5): 1398
作者单位
摘要
1 哈尔滨工业大学 物理系, 黑龙江 哈尔滨 150001
2 上海机电工程研究所, 上海 201109
为了深入了解大气压下Ar等离子体射流的产生机理和内部电子的状态, 对Ar等离子体射流进行了发射光谱诊断, 以玻尔兹曼斜率法对电子激发温度进行测算, 利用发射光谱的连续谱绝对强度法测算出电子密度。通过设计一种可调节气压的金属针-环型介质阻挡放电装置, 研究了氩气压和放电功率对Ar等离子体射流的电子激发温度和电子密度的影响。结果表明, 随着气压从6 kPa升高到16 kPa, 电子激发温度从0.83 eV下降到0.68 eV, 电子密度从4.45×1022 m-3减小到0.44×1022 m-3(波长648.06 nm), 且随着放电功率从0.177 5 W增大到1.792 6 W, 电子激发温度从0.82 eV升高到5.14 eV, 电子密度从0.27×1022 m-3增大到4.61×1022 m-3, 而且电子密度较低时, 电子激发温度的变化更明显。由此得出结论, 氩气压和放电功率对电子激发温度不仅有直接影响, 还有通过电子密度变化导致的间接影响, 电子密度较低时, 氩气压和放电功率对电子激发温度的影响会相对更大一些。同时, 选用两个波长计算的电子密度结果很接近, 验证了诊断结果的准确性。
等离子体射流 发射光谱 绝对强度 电子激发温度 电子密度 plasma jet emission spectrum absolute intensity electron excitation temperature electron density 
发光学报
2019, 40(8): 1049
作者单位
摘要
空军工程大学等离子体动力学重点实验室, 陕西 西安 710038
电感耦合等离子体具有电子密度高、 放电面积大、 工作气压宽、 结构简单等特点, 在等离子体隐身领域具有突出的潜在优势。 相对于开放式等离子体, 闭式等离子体更适应于飞行器表面空气流速高、 气压变化大的特殊环境。 研究着眼于飞行器关键部件的局部隐身应用, 设计了一种镶嵌于不锈钢壁中的圆柱形石英腔体结构, 利用电感耦合放电的方式在腔体中产生均匀的平板状等离子体。 由于增加了接地金属, 降低了腔体内的钳制电位, 同之前的纯石英腔体相比, 该结构显著改善了等离子体的均匀性。 研究了该闭式腔体内氩气电感耦合等离子体(ICP)的放电特性和发射光谱, 实验中放电功率达到150 W时, 可以明显观察到ICP的E-H模式转换, 此时发射光谱和电子密度都呈现阶跃式增长。 氩气发射光谱强度随放电功率升高显著增加, 但是不同谱线强度增加幅度并不一致, 分析认为是受不同的跃迁概率和激发能的影响。 根据等离子体的发射光谱, 利用玻尔兹曼斜率法对电子激发温度进行诊断, 得到电子激发温度在2 000 K以上, 并且随功率升高而降低, 因为功率增大使电子热运动增强, 粒子间的碰撞加剧, 碰撞导致的能量消耗也更大。 电子激发温度沿腔体径向呈近似均匀分布, 分布趋势受功率影响不大。 针对利用发射光谱诊断电子密度误差较大、 计算繁琐的问题, 引入Voigt卷积函数, 经过拟合滤除多余展宽项的影响, 得到准确的Stark展宽半高宽。 最终利用发射光谱Stark展宽法计算了电子密度, 腔体中心处的峰值密度可以达到7.5×1017 m-3。 随着放电功率增大, 线圈中容性分量降低, 耦合效率增大, 电子密度随之增大, 但空间分布趋势基本不受功率影响。
等离子体隐身 电感耦合等离子体 发射光谱 电子激发温度 电子密度 Plasma stealth Inductively coupled plasma Emission spectra Electron excitation temperature Electron density 
光谱学与光谱分析
2019, 39(4): 1242
作者单位
摘要
1 北华航天工业学院 基础部, 河北 廊坊 065000
2 河北大学 物理科学与技术学院, 河北 保定 071002
对单针电极射流等离子体产生和发展过程中的光信号进行了研究。首先发现等离子体的长度并不是随外加电压升高而增加, 而是和驱动电源的能量在正半周放电脉冲之间的分配有关。通过研究等离子体通道内不同位置的发光信号, 发现正半周期第一次放电脉冲是在针尖电极处产生, 而第二个脉冲是在等离子体通道中部产生, 电子激发温度也是在等离子体中部达到最高。通过分析发现, 空间电荷产生的附加电场对于等离子体的产生和发展有着重大影响。
射流等离子体 单针电极 电子激发温度 空间电荷 plasma jet single needle electrode electronic excitation temperature space charge 
发光学报
2018, 39(10): 1405
作者单位
摘要
重庆邮电大学光电工程学院光电信息感测与传输技术重庆市重点实验室, 重庆 400065
搭建了正交的再加热双脉冲激光诱导击穿光谱(RDP-LIBS)实验装置。以黄连为研究对象,用其特征谱线的光谱强度和信背比评估了光谱特性。通过优化探测延时、两束激光能量值组合及脉冲间隔等实验参数,提高了检测的灵敏度。相比单脉冲激光诱导击穿光谱(SP-LIBS)技术,RDP-LIBS技术对4条特征谱线(Fe、Al、Ca、CN)的光谱强度增强倍数分别为4.0,5.5,10.0和3.5。RDP-LIBS下的等离子体电子激发温度和电子数密度均比SP-LIBS下的有所提高。
激光技术 激光诱导击穿光谱(LIBS) 光谱增强 再加热双脉冲 中药材 电子激发温度 电子数密度 
中国激光
2018, 45(7): 0702006

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!