作者单位
摘要
1 上海理工大学 机械工程学院,上海 200093
2 上海健康医学院 上海市分子影像学重点实验室,上海 201318
介质阻挡放电 (DBD) 在工业中得到广泛应用,但效率限制了它的进一步应用。提出了一种DBD结构和针板结构相结合的三电极结构。将正极性脉冲电源施加在DBD电极上,负极性脉冲电源施加到针板电极上。分析了不同结构下三电极DBD的放电特性、现象和光谱强度。结果表明,三电极结构更加有利于DBD放电通道的产生,其放电均匀性、发光强度均强于双电极DBD,特别是在丝网接地电极条件下,放电更加强烈。当三种电极结构正极性电压维持在11 kV,负极性电压为−5 kV时,丝网接地三电极中DBD的放电电流峰值达到1.54 A,而实心接地三电极和传统双电极中DBD的放电电流峰值为1.14 A和0.74 A。在负极性脉冲维持期间,针网间隙处于击穿状态,DBD放电出现很大的放电电流。在三电极结构中,随着施加在针板上负极性电压的升高也使三电极DBD放电更加强烈。不同结构下的DBD的放电光谱表明在丝网接地时三电极DBD激发粒子的光谱强度最强。这一趋势与DBD放电电流和功率一致。
介质阻挡放电 三电极结构 放电特性 发射光谱 dielectric barrier discharge three electrode structure discharge characteristics emission spectrum 
强激光与粒子束
2024, 36(2): 025008
作者单位
摘要
1 中国地质调查局昆明自然资源综合调查中心, 云南 昆明 650100 中国地质科学院岩溶地质研究所/自然资源部、 广西壮族自治区岩溶动力学重点实验室, 广西 桂林 541004
2 中国地质调查局昆明自然资源综合调查中心, 云南 昆明 650100
原子发射光谱法(AES)广泛应用于多目标地球化学调查、 生态地球化学评价和国际地球化学填图计划(IGCP259/360)等项目配套分析方法中Ag、 B、 Mo、 Sn等元素的测定工作。 以交流电弧粉末法为基础的载体蒸馏技术能够有效减小基体效应, 改善待测元素的分馏过程, 通过建立以Al2O3、 BaCO3、 K2S2O7、 NaF、 S、 Fe2O3、 [C2F4]n等为主要组份的载体蒸馏技术, 证实该载体缓冲剂能够很好地促使样品中待测元素发生氧化、 氟化及硫化反应。 通过调节一系列物理和化学反应, 提高待测元素的挥发程度, 减小样品基体元素的挥发, 改善了Ag、 B、 Ge、 Mo、 Sn等元素的蒸发过程。 扫描电镜(SEM)显示载体缓冲剂与样品的主量元素在高温电弧中形成复合盐固熔体, 能够吸收CaO、 SiO等基体氧化物, 抑制其对待测组分的干扰, 缓冲剂中载体各组分之间相互协同促进各元素在杯状石墨电极中的反应, 蒸发曲线表明载体缓冲剂能够有效控制各元素的蒸发过程, 整个弧焰区域也处于热力学平衡状态, 在30 s内各待测组分基本蒸发完毕, 而且控制激发电流能够提高信噪比, 降低检出限。 在此基础上建立新的AES-7200型直读发射光谱仪快速测定地球化学样品中Ag、 B、 Ge、 Mo、 Sn等元素的单电极载体蒸馏法, 待测元素标准曲线均具有良好的线性关系, 其相关系数为0.997 21~0.99937, 方法检出限Ag 0.008 μg·g-1、 B 0.646 μg·g-1、 Mo 0.160 μg·g-1、 Sn 0.129 μg·g-1, 精密度(RSD%): 2.27~10.0, 准确度(Δ|logC|)<0.1。 通过大量水系沉积物、 土壤和岩石类样品分析验证试验, 单电极载体蒸馏法能够提高待测元素检测的灵敏度和分析结果的准确度, 并且适用于复杂的碳酸盐、 含氧化铁和结合水较高的硅酸盐类区域地球化学勘查样品的分析, 可以满足不同区域地球化学调查和生态地球化学评价的需要。
载体缓冲剂 单电极载体蒸馏法 发射光谱 区域地球化学 Carrier buffer Single-electrode carrier distillation Atomic emission spectrum Regional geochemistry 
光谱学与光谱分析
2023, 43(7): 2132
陈斌 1傅骁 1,*段发阶 1闫钰 1[ ... ]钟国舜 2
作者单位
摘要
1 天津大学精密测试技术及仪器国家重点实验室,天津 300072
2 中国电子科技集团公司第十一研究所,北京 100016
由于转盘电极原子发射光谱(RDE-AES)技术具有操作简单、无须制备样品、结果可靠性强等优良特性,被广泛应用于油液检测。但该技术采用的光源主要是电弧,由于电极磨损导致放电间隙改变造成的电弧不稳定等原因导致最后采集的光谱数据所分析的结果与实际存在误差。本文提出了一种基于“双转盘”电极结构的原子发射光谱油液检测装置的检测方法,即将传统“棒-转盘”电极结构中的棒电极更换为可以旋转的转盘电极,其显著优势是减小了电极磨损所带来的检测误差。对其结构进行物理建模,通过COMSOL多物理场仿真软件对电弧激发的过程进行了仿真,采用控制变量法研究了电极间隙、油膜厚度、外加激励三个主要变量对电弧激发效果的变化规律的影响,得到了影响因素与电弧激发时刻和激发瞬时温度的关系曲线图,并根据仿真结果进行了参数优化。仿真结果显示,“双转盘”电极结构较传统结构的激发效果有了明显改善,激发时间和激发温度都有一定的改善,尤其在大批量检测时电弧激发效果稳定,验证了该方法的先进性和实用性,为转盘电极原子发射光谱油液检测方法的进一步深入研究提供了分析支持。
仪器,测量与计量 双转盘 电弧激发 油液分析 原子发射光谱 COMSOL仿真 
激光与光电子学进展
2023, 60(23): 2312003
作者单位
摘要
1 中北大学信息与通信工程学院, 山西 太原 030051
2 中北大学仪器与电子学院, 山西 太原 030051
可见光高速摄影是研究弹丸侵彻过程的重要方式, 然而弹丸侵彻过程中发出的强烈闪光会导致高速摄影丢失诸如着靶、 侵入等时刻的关键画面。 因此, 分析侵彻光谱发生机理、 选取合适的侵彻过程光学观察窗口尤为重要。 针对400 mm直径高强度钢卵形弹以804 m·s-1侵彻20 cm厚度45#钢靶的实验, 设计了光谱瞄准采集设备。 利用多模光纤耦合物镜在距离靶板25 m处采集了侵彻全过程积分光谱, 采集区覆盖靶板直径431 mm。 对侵彻靶板破片中可能存留的弹头熔融物质以及弹托其他样品进行LIBS(laser induced breakdown spectroscopy)分析, 并与侵彻积分光谱成分对比分析。 研究表明, 侵彻光谱与高速碰撞闪光光谱发生机理相同, 均包含连续光谱与线光谱。 615~700 nm区间内的平稳积分连续光谱由两部分组成: (a)弹靶少量金属元素和O Ⅰ、 O Ⅱ发射光谱的展宽积分; (b)少量热辐射光谱积分。 侵彻热辐射主要源于剪切应变做功和摩擦做功, 然而侵彻光谱中的热辐射强度明显低于高速碰撞光谱, 这是弹丸在剪切冲塞、 侵彻后大部分动能得以保留造成的; 侵彻过程可见光光谱具有明显原子发射谱线, 主要来自于金属原子及其一级电离的发射光谱。 干扰最强的可见光成分来源于588.88~589.53和766.41~766.43 nm的FeⅠ等离子体线光谱, 且由于斯塔克展宽效应, 线光谱呈洛伦兹线型, 其FWHM(full width at half maximum)可达27 nm。 因此, 在野外环境侵彻实验中, 当Fe为弹靶主要成分时, 380~450 nm为可见光高速摄影的最佳观察窗口, 可以避免侵彻发光干扰, 实现对侵彻全过程拍摄。 考虑到大气对该波段的散射影响, 应保证高速摄影设备的光通量。
侵彻 发射光谱 光学观察窗口 Penetration Emission spectrum Optical observing window LIBS LIBS 
光谱学与光谱分析
2023, 43(3): 718
作者单位
摘要
1 电子科技大学 资源与环境学院,四川 成都 610054
2 上海空间推进研究所 上海空间发动机工程技术研究中心,上海 201112
目前,电弧激励器的仿真研究仅局限于得到激励器产生的等离子体的电势、压力、温度和速度等工作特性,而其有关的等离子体状态参数仅限于用光谱诊断其电子温度和电子密度等,二者是分立的,本文试图将其二者统一起来。本文设计了电弧射流等离子体激励器,采用有限元法求解非线性多物理场方程,对此电弧射流等离子体激励器的工作特性进行了数值模拟,得到了激励器内部的电势、压力、温度和速度分布,并在此基础上计算了电子密度,由激励器工况得到了激励器等离子体状态参数(电子温度和电子密度)的仿真计算模型。然后采用发射光谱诊断方法对射流等离子体进行了光谱诊断,利用分立谱线的强度比例法对等离子体电子密度进行计算。结果表明:电弧等离子体激励器诊断实验得到的最高电子温度为10505.8 K,最大电子密度为5.75×1022 m−3。对于不同工况下的等离子体电子温度和等离子体密度,实验和仿真结果数值均随入口气体流量增大及放电电流的增大而增大。表明对于所设计的小型化、高射流速度的电弧射流激励器等离子体状态参数的仿真计算模型是合理且适用的。说明将激励器工作特性仿真与光谱诊断的电子温度、密度统一考虑是基本成功的,同时还有值得进一步改进的地方。
发射光谱 光谱学 电子密度 电弧激励器 emission spectrum spectroscopy electron density arc actuator 
中国光学
2023, 16(2): 296
作者单位
摘要
上海理工大学脉冲功率实验室, 上海 200082
通过自主设计正极性Marx纳秒脉冲电源, 在不同放电频率、 不同电源电压幅值下, 采用发射光谱在真空环境下对氩气放电时的电子激发温度和电子密度进行测量计算。 通过双谱线法选取合适的Ar原子谱线, 求得电子激发温度在1 550~3 400 K之间, 在正极性脉冲电源做电压源, 且电源电压一定时, 电子激发温度随着电源频率的升高而呈现上升趋势, 在电源频率一定时, 电子激发温度也随着电源电压的增加而升高。 依据Stark展宽原理对真空体积介质阻挡放电时的电子密度进行了测量计算。 电子密度的数量级可达1013 m-3, 当电源电压不变时, 电子密度随电源频率的增加呈现上升趋势, 当电源频率不变, 电子密度随着电源电压的升高也逐渐提升。
真空介质阻挡放电 发射光谱 电子激发温度 电子密度 Vacuum DBD Emission spectrum Electron excitation temperature Electron density 
光谱学与光谱分析
2023, 43(2): 455
作者单位
摘要
西安工程大学环境与化学工程学院, 陕西 西安 710048
远程等离子体可以有效避免电子与离子碰撞产生的刻蚀作用, 加强自由基反应, 取得更好的改性效果, 在膜材料领域具有重要的应用价值。 为了更加深入研究远程等离子体中电子状态及其变化规律, 采用发射光谱法对远程Ar等离子体进行了诊断, 研究了射频功率、 反应腔室内压强、 距放电中心距离对远程Ar等离子体发射光谱强度、 电子密度和电子温度的影响。 结果表明, 在690~890 nm区域中特征峰较为集中, 由ArⅠ原子谱线占主导, 且谱线强度的变化规律和电子密度的变化规律相同。 通过玻尔兹曼斜率法选取3条ArⅠ谱线计算了不同放电参数下的电子温度。 电子温度随射频功率、 反应腔室内压强、 距放电中心距离的改变而改变。 射频功率从30 W增加到150 W时, 电子温度从3 105.39 K降低至2 552.91 K。 压强从15 Pa增加到25 Pa时, 电子温度从3 066.53 K降低到2 593.32 K, 当压强继续增加到35 Pa时, 电子温度则增加至2 661.71 K。 在距放电中心0~10 cm处由于等离子体电位增大, 电子温度上升, 而10 cm后电子温度不断下降在距放电中心80 cm处趋于0 K。 通过分析ArⅠ696.894谱线的斯塔克展宽计算了远程Ar等离子体的电子密度, 发现电子密度的数量级可达1016 cm-3。 射频功率从30 W增加到150 W时, 电子密度从2.15×1016 cm-3增加到2.88×1016 cm-3, 压强从15 Pa增加到25 Pa时, 电子密度从2.36×1016 cm-3增加到2.90×1016 cm-3, 当压强继续增加到35 Pa时, 电子密度则降低至1.89×1016 cm-3。 增加轴向距离电子密度快速下降并在距放电中心80cm处趋于0cm-3。 可以通过控制放电参数及轴向距离来获得低浓度电子、 离子氛围, 有效避免电子与离子碰撞造成的刻蚀作用, 获得更好的改性效果。
远程等离子体 发射光谱 电子温度 电子密度 Remote plasma Emission spectrum Electronic temperature Electron density 
光谱学与光谱分析
2023, 43(2): 394
李加红 1,2,3张庆礼 1,2,*孙贵花 1,2高进云 1,2[ ... ]孙彧 1,2
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所 安徽省光子器件与材料重点实验室,安徽 合肥 230031
2 先进激光技术安徽省实验室,安徽 合肥 230031
3 中国科学技术大学,安徽 合肥 230026
4 安徽工业大学 数理科学与工程学院,安徽 马鞍山 243002
采用提拉法生长了质量优良的Yb∶GdScO3晶体,对样品的X射线粉末衍射进行了Rietveld精修,给出了晶体计算密度及掺杂浓度。Yb3+的有效分凝系数计算为1.04。室温下测量了其吸收光谱、发射光谱和荧光寿命,首次计算了GdScO3基质中Yb3+的吸收、发射振子强度、谱线强度、跃迁概率、能级寿命和积分发射截面等重要光谱参数,对其激光性能进行了初步评估。结果表明,Yb∶GdScO3易于输出1 030 nm和1 060 nm波段附近的激光,而对于1 000 nm附近的激光输出则只有在高粒子数反转情况下才可能实现。
Yb∶GdScO3 吸收光谱 发射光谱 光跃迁 Yb∶GdScO3 absorption spectrum emission spectrum optical transition 
发光学报
2022, 43(11): 1779
作者单位
摘要
1 中国民用航空飞行学院理学院, 四川 广汉 618307
2 青岛海洋科学与技术试点国家实验室海洋观测与探测联合实验室, 山东 青岛 266200
研发能够精确、 实时、 原位获取热液甲烷数据的深海甲烷传感器对深海研究具有非常重要的意义。 前期研制的两款深海甲烷光学成像干涉系统, 均利用甲烷辐射光谱开展甲烷状态参数探测和反演。 首先, 以分子光谱辐射理论为基础, 建立了分子辐射光谱与浓度、 温度、 压强的理论关系式, 结合深海高压环境特点, 建立了基于Lorentz线型的深海分子辐射模型, 该模型为利用光谱法定量反演分子浓度、 温度、 压强等状态参数提供理论依据, 同时为深海分子光谱仿真提供有力工具。 接着, 借助HITRAN分子光谱数据库提供的分子基本谱线参数, 挑选出甲烷成像干涉系统的光源谱线。 对比CH4分子与CO2, H2S, H2O等分子的特征吸收谱线, 在5 990~6 150 cm-1波段范围内, CH4谱线强度比CO2, H2S, H2O等三种干扰分子的谱线强度约高2~3个数量级, 且此波段内甲烷六条有效谱线分布均匀, 谱线间距皆约为2~3 nm, 非常适合采用光谱法进行分子状态参数探测, 因此选择谱线干扰较弱、 谱线分布均匀、 谱线间距适中的甲烷六条谱线(1 640.37, 1 642.91, 1 645.56, 1 648.23, 1 650.96和1 653.72 nm)作为甲烷成像干涉探测系统的目标光源谱线。 最后, 基于深海分子辐射模型和HITRAN数据库的甲烷分子基本谱线参数, 人工合成了甲烷任意浓度, 任意温度和任意压强的辐射光谱数据, 并分析了甲烷辐射光谱随浓度、 温度和压强的变化特征。 对于单一中心谱线, 甲烷分子辐亮度随着浓度的升高而线性增大, 随着温度的升高而非线性增大, 随着压强的升高而非线性减小。 对于全波段谱线, 甲烷辐射光谱的全线宽随着浓度、 温度的升高而变宽, 随着压强的升高而变窄。 建立的深海甲烷辐射光谱理论和仿真分析结果, 可以为基于光谱法的海洋原位甲烷传感器的研制和数据反演提供数据支撑和理论依据。
热液甲烷 辐射光谱 HITRAN分子光谱数据库 成像干涉 Hydrothermal methane Emission spectrum HITRAN Imaging interference 
光谱学与光谱分析
2022, 42(9): 2714
作者单位
摘要
1 火箭军研究院, 北京 100094
2 海南大学理学院, 海南 海口 570228
3 四川红华实业有限公司第二分场, 四川 峨眉山 614200
4 中国石油大学理学院, 北京 102200
氟氯酰(ClF3O)是一种极强的氟化剂和氧化剂, 极易与水和有机物发生爆炸性反应。 目前关于氟氯酰与水以及有机物等物质的反应机理不多见, 氟氯酰与水以及有机物等物质由反应物变成产物的过程有待研究。 采用ICCD瞬态光谱测量系统, 实时拍摄到无氧和有氧环境下氟氯酰和正癸烷反应的瞬态发射光谱; 采用量子化学理论方法对氟氯酰和正癸烷的反应机理进行了探索研究, 理论计算与试验结果相一致。 瞬态发射光谱试验结果表明, 在无氧环境下, 氟氯酰和正癸烷反应会产生CH和C2自由基, 证实了无氧时氟氯酰确实能与正癸烷发生反应, 显示出氟氯酰的高活性; 在有氧环境下, 则会产生OH, CH和C2自由基。 CH自由基强度最大的发射峰位于431.4nm, 归属于A2Δ-X2П电子态之间的跃迁; C2自由基强度最大的发射峰位于516.3 nm, 归属于A3Пg-X3Пu电子跃迁; OH自由基强度最大的发射峰位于309.5 nm, 归属于A2Σ+-X2Пi电子跃迁。 量子化学理论计算结果表明, ClF3O与正癸烷的反应始于ClF3O中具有较多负电荷的F原子向正癸烷分子中间的H原子进攻生成HF, 该引发反应活化能很低, 并大量放热。 在无氧环境下, 氟氯酰与正癸烷可能发生氟代反应, 反应产物为ClFO、 HF和相应的氟代烷烃等。 氟代烷烃可能会发生脱氢反应生成C10H20F, 接着裂解为C4H9及氟代烯烃C6H11F; C4H9进一步分解为C2H5和C2H4, 最终形成CH和C2自由基等。 有氧环境下反应初始步骤与无氧条件下相同, 当反应进行到一定程度, 产生烷烃自由基之后, O2参与反应, 形成过氧自由基, 过氧自由基继续分解, 产生OH, CH和C2自由基。 在氧气参与下, 反应过程中产生大量的OH自由基, 加速反应的进程, 宏观上表现为正癸烷被引发爆燃与燃烧。 这些自由基和中间体对于揭示氟氯酰和正癸烷反应的微观机理具有重要的指示意义。 氟氯酰和正癸烷的反应机理与试验结果均证实: 小自由基CH、 OH和C2是氟氯酰与正癸烷反应过程中的重要中间产物, 这对于认识氟氯酰与正癸烷反应的微观过程非常重要, 也为氟氯酰的**化应用奠定了一定的理论基础。
氟氯酰 正癸烷 反应机理 中间自由基 发射光谱 ICCD相机 ClF3O n-Decane Reaction mechanism Intermediate radical Emission spectrum ICCD 
光谱学与光谱分析
2022, 42(5): 1522

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!