中国激光, 2018, 45 (7): 0702006, 网络出版: 2018-09-11   

正交再加热双脉冲激光诱导黄连等离子体的光谱特性 下载: 859次

Spectral Characteristics of Coptis Chinensis Plasma Induced by Orthogonal Re-Heating Double-Pulse Laser
作者单位
重庆邮电大学光电工程学院光电信息感测与传输技术重庆市重点实验室, 重庆 400065
摘要
搭建了正交的再加热双脉冲激光诱导击穿光谱(RDP-LIBS)实验装置。以黄连为研究对象,用其特征谱线的光谱强度和信背比评估了光谱特性。通过优化探测延时、两束激光能量值组合及脉冲间隔等实验参数,提高了检测的灵敏度。相比单脉冲激光诱导击穿光谱(SP-LIBS)技术,RDP-LIBS技术对4条特征谱线(Fe、Al、Ca、CN)的光谱强度增强倍数分别为4.0,5.5,10.0和3.5。RDP-LIBS下的等离子体电子激发温度和电子数密度均比SP-LIBS下的有所提高。
Abstract
An orthogonal re-heating double pulse laser-induced breakdown spectroscopy (RDP-LIBS) experimental setup is built. The Coptis Chinensis is selected as the research target and the spectral intensities and signal-to-background ratios of its characteristic spectral lines are used to evaluate the spectral characteristics. The detection sensibility is improved by the optimization of detection delay, the combination of two laser energy values, the pulse interval and other experimental parameters. Compared with those by the single pulse laser-induced breakdown spectroscopy (SP-LIBS) technique, the enhancement factor of spectral intensities by the RDP-LIBS technique for the four characteristic spectral lines of Fe, Al, Ca and CN are 4.0, 5.5, 10.0 and 3.5 times, respectively. The electron excitation temperature and the electron number density of plasma by the RDP-LIBS technique are both higher than those by the SP- LIBS technique.

1 引言

目前,对中药材中微量元素如Fe、Ca、Al、Zn等[1]的传统检测分析方法有电感耦合等离子体发射光谱(ICP-OES)法、原子吸收光谱(AAS)法、电感耦合等离子体质谱(ICP-MS)法 等[2-4]。这些方法探测灵敏度高,但样品预处理过程复杂,不能进行实时检测。

激光诱导击穿光谱(LIBS)技术具有多元素在线分析功能,且样品制备过程简单,已经被应用于中药材的元素检测分析中[5-6]。王彩虹等[7]使用LIBS技术快速检测蔬菜中的Ca元素,结果表明,利用LIBS技术能清晰探测出样品中浓度高的元素,但是对于浓度低的重金属,检测灵敏度不足。Yi等[8]采用基于小波变换算法的背景去除的标准加入法,提高了粉末样品中元素的LIBS探测灵敏度,样品中Pb的预测浓度标准偏差提高到97.76%。郭连波等[9]使用LIBS结合空间约束的方法检测钢铁样品中低浓度元素V、Cr、Mn,结果证明该方法可以提高LIBS的探测灵敏度。杨宇翔等[10]采用激光诱导击穿光谱-激光诱导荧光联用技术,将液体样品转换为固体样品,实现了水中重金属元素Pb的超灵敏快速检测。

双脉冲(DP)LIBS技术不仅具有单脉冲(SP) LIBS的优点,还能增强光谱强度,提高LIBS的探测灵敏度[11-12],主要用于分析金属样品[13-18]。目前关于DP-LIBS技术在中药材元素检测中的研究鲜有报道,对于金属样品和有机样品,它们的烧蚀机制也不同[19]

本文采用正交再加热双脉冲装置,对中药材黄连中的元素进行了检测,分析了探测延时、激光能量值组合、脉冲间隔等参数对再加热双脉冲激光诱导击穿光谱(RDP-LIBS) [20]检测灵敏度的影响。在最优的实验条件下,获得了4条特征谱线Fe I (358.17 nm)、Al I (396.15 nm)、Ca II (393.37 nm)、CN (388.34 nm)的光谱强度增强倍数。对比了SP-LIBS和RDP-LIBS检测中,等离子体电子激发温度和电子数密度随探测延时的变化关系。

2 实验及理论

2.1 实验装置

搭建的正交RDP-LIBS系统如图1所示。黄连样品放在二维移动平台上。采用脉冲激光器1作为等离子体的激发光源,其工作波长为1064 nm,脉冲宽度为5.82 ns,工作频率为20 Hz,激光能量为100 mJ。采用脉冲激光器2作为等离子体再加热光源,其工作波长为1064 nm,脉冲宽度为6 ns,工作频率为20 Hz,激光能量为400 mJ。采用四通道数字延时脉冲发生器控制两个激光器光束发射的间隔时间。利用光谱收集器将等离子体光谱信号耦合至传输光纤,并利用中阶梯光栅光谱仪进行分光,再通过增强电荷耦合器件(ICCD)进行光电转换,最后利用计算机进行采集和处理,ICCD的分辨率为2014 pixel×512 pixel。

图 1. 正交RDP-LIBS实验装置

Fig. 1. Experimental setup of orthogonal RDP-LIBS

下载图片 查看所有图片

2.2 实验样品

实验所用的黄连购自重庆中药材市场,如图2(a)所示,通过粉碎机将其粉碎成粉末,过筛,置于60 ℃的烘干箱烘干。用电子天平取0.5 g样品,使用液压机将其压成直径为13 mm,厚为2 mm的黄连样品,如图2(b)所示。

3 结果与分析

3.1 探测延时对光谱强度的影响

在激光等离子体形成初期,特征谱线的光谱强度和背景噪声都很强,但背景噪声的衰减速度远大于特征谱线的,故可以通过调节ICCD探测延时来

图 2. 黄连。(a) 采购的实物;(b) 制备后的样品

Fig. 2. Coptis Chinensis. (a) Purchased real objects; (b) samples after preparation

下载图片 查看所有图片

观测特征谱线的时间演化特性。设定激光脉冲频率、ICCD探测门宽和脉冲间隔分别为4 Hz, 0.2 μs和3.6 μs,主脉冲激光能量值和再加热脉冲激光能量值都设为25 mJ, 将ICCD探测延时从0 μs逐步增加到6.5 μs,间隔为0.5 μs。中药材样品中的4条特征谱线Fe I (358.17 nm)、Al I (396.15 nm)、 Ca II (393.37 nm)、CN (388.34 nm)的光谱强度和信背比(SBR)随探测延时的变化情况如图3所示。

图 3. 4条特征谱线的光谱强度和信背比随探测延时的演化。(a) Fe I; (b) CN; (c) Ca II; (d) Al I

Fig. 3. Spectral intensities and SBRs of four characteristic spectral lines versus detection delay. (a) Fe I; (b) CN; (c) Ca II; (d) Al I

下载图片 查看所有图片

图3可知,特征谱线Fe I (358.17 nm)的光谱强度随着探测延时的增加而减小,而信背比随着探测延时的增加先增大,之后缓慢减小;特征谱线CN (388.34 nm)、Ca II (393.37 nm)、Al I (396.15 nm)的光谱强度在探测延时为0~1 μs的范围内逐渐增大,之后逐渐减小,它们的信背比都随着探测延时的增加先增大后减小。这是由于随着探测延时的增加,背景信号强度减小得很快,信背比逐渐增大。在背景信号基本衰减完后,由于等离子体逐渐消失,特征谱线强度减小,故信背比也开始减小。选取图3中两曲线交点处的1.5 μs作为最优探测延时。

3.2 双脉冲的激光能量对光谱强度的影响

前后两束激光的能量值组合和脉冲间隔时间t1是决定光谱强度的两个重要因素[21]。固定探测延时t2为1 μs,通过调节数字脉冲延时发生器来改变脉冲间隔t1,变化范围为0~9 μs。每个光谱累加20次激光脉冲,每个数据点测量5次光谱强度,取平均值。

由文献[ 18,21-23]可知,第一束激光能量值会影响样品中等离子体的电子数和离子数密度,从而改变第二束激光作用于等离子体的环境,故对于不同的样品,获得最强光谱信号的双脉冲激光能量取值组合是不同的。此外,样品的表面粗糙度和热特性也会影响激光诱导样品等离子体的烧蚀过程。图4所示为在不同激光能量组合下,样品中4条特征谱线的光谱强度和SBR随脉冲间隔t1的变化曲线。由图4可知,4条特征谱线的最优SBR值均出现在脉冲间隔为3~5 μs的范围内,在这一范围内,当主脉冲激光能量值为15 mJ,再加热脉冲激光能量值为35 mJ时,光谱强度最大,故它们为本实验的最优激光能量值组合。

图 4. 不同激光能量组下4条特征谱线的光谱强度和SBR随脉冲间隔的变化。(a)(b) Fe I; (c)(d) CN; (e)(f) Ca II; (g)(h) Al I

Fig. 4. Spectral intensities and SBRs of four characteristic spectral lines versus pulse interval under different energy groups. (a)(b) Fe I; (c)(d) CN; (e)(f) Ca II; (g)(h) Al I

下载图片 查看所有图片

3.3 脉冲间隔对光谱强度的影响

脉冲间隔是影响双脉冲LIBS信号强度的主要因素[24]。设置主脉冲激光能量为15 mJ,再加热激光能量为35 mJ,探测延时为1.5 μs,4条特征谱线Fe I (358.17 nm)、Al I (396.15 nm)、Ca II (393.37 nm)、CN (388.34 nm)的光谱强度和信背比随脉冲间隔的变化规律基本一致,如图5所示。当脉冲间隔为0~2 μs时,光谱强度随着脉冲间隔的增加而减小,这是由于第一束激光脉冲与样品相互作用产生等离子体,等离子体的屏蔽效应使光谱强度逐渐减小,此时的光谱强度和背景信号都很高。当脉冲间隔大于2 μs时,光谱强度先增大后减小,这是由于第一束激光脉冲瞬时改变了样品表面的环境粒子密度,被第二束脉冲消融的样品材料能够更好地膨胀,光谱信号增强。随着脉冲间隔的延长,第二束激光开始与样品表面发生相互作用,光谱信号减弱。4条特征谱线特别是Ca II (393.37 nm),在脉冲间隔为4.4 μs时有最优的信背比和光谱强度。

3.4 光谱增强程度

SP-LIBS的激光能量设为50 mJ,探测延时设为1.5 μs;RDP-LIBS的主脉冲激光能量设为15 mJ,再加热激光能量设为35 mJ,脉冲间隔和探测延时分别为4.4 μs和1.5 μs,获得的4条特征谱线Fe I (358.17 nm)、Al I (396.15 nm)、Ca II (393.37 nm)、CN (388.34 nm)的光谱对比图如图6所示。由图6可知,RDP-LIBS可以显著提高样品谱线的强度[20]表1所示为4条特征谱线的光谱增强倍数和相对标准偏差(RSD)。由表1可知,采用SP-LIBS获得的光谱信号平均RSD为13.5%,而采用RDP-LIBS获得的光谱信号平均RSD为

图 5. 4条特征谱线的光谱强度和信背比随脉冲间隔的变化规律(E1=15 mJ,E2=35 mJ,T1=1.5 μs)。(a) Fe I; (b) CN; (c) Ca II; (d) Al I

Fig. 5. Spectral intensities and SBRs of four characteristic spectral lines versus pulse interval (E1=15 mJ, E2=35 mJ, T1=1.5 μs). (a) Fe I; (b) CN; (c) Ca II; (d) Al I

下载图片 查看所有图片

图 6. SP-LIBS与RDP-LIBS的信号强度对比

Fig. 6. Signal intensity comparison for SP-LIBS and RDP-LIBS

下载图片 查看所有图片

9.3%,说明RDP-LIBS所采集的光谱信号的稳定性要高于SP-LIBS的。

3.5 等离子体的电子激发温度和电子数密度

研究了等离子体电子激发温度和电子数密度随探测延时的变化规律,并与单脉冲LIBS的结果进行对比。选择Ca II (317.93 nm)、Ca II (370.60 nm)、Ca II (373.69 nm)、Ca II (393.37 nm) 和Ca II (396.85 nm) 5条谱线,利用Boltzmann平面法计算等离子体电子激发温度,对Ca II (393.37 nm)进行Lorentz拟合,从而计算电子数密度。表2所示为计算等离子体电子激发温度所需的Ca II谱线的跃迁参数,其中Ek为上能级能量,Ei为下能级能量,p、d、s为电子组态,P、D、S为原子组态,gk为上能级权重,Aki为跃迁几率。

表 1. 4条特征谱线的光谱增强倍数和相对标准偏差

Table 1. Enhancement factor of spectral intensity and RSD for four characteristic spectral lines

Characteristic spectral lineEnhancement factorRSD of SP-LIBS /%RSD of RDP-LIBS /%
Fe I 358.17 nm4.013.511.1
CN 388.34 nm5.59.16.1
Ca II 393.37 nm10.010.38.7
Al I 396.15 nm3.521.011.3

查看所有表

图7所示为RDP-LIBS与SP-LIBS中黄连样品Ca II谱线的Boltzmann线性拟合结果,其中I为光谱强度,λ为特征谱线波长,R2为线性拟合度。以探测延时t2=750 ns 为例,得到RDP-LIBS黄连样品等离子体的电子激发温度为12692 K,SP-LIBS黄连样品等离子体激发温度为11763 K,表明双脉冲可以提高中药材中等离子体的电子激发温度。

表 2. Boltzmann拟合所使用的Ca II谱线的光谱参数

Table 2. Spectral parameters of Ca II spectral line used for Boltzmann fitting

Wavelength λ/nmTransition parameterWeight factor ofup level gkTransitionprobability Aki /s-1Energy /eV
EkEi
317.933p64d 2D5/2→3p64p 2P3/263.6×1087.0491503.150984
370.603p65s 2S1/2→3p64p 2P1/228.8×1076.4678753.123349
373.693p65s 2S1/2→3p64p 2P3/221.7×1086.4678753.150984
393.373p64p 2P3/2→3p64s 2S1/241.47×1083.1509840
396.853p64p 2P1/2→3p64s 2S1/221.4×1083.1233490

查看所有表

图 7. 黄连样品Ca II谱线的Boltzmann线性拟合。(a) RDP-LIBS;(b) SP-LIBS

Fig. 7. Boltzmann linear fitting of Ca II spectral line of Coptis Chinensis samples. (a) RDP-LIBS; (b) SP-LIBS

下载图片 查看所有图片

3.5.1 脉冲间隔对等离子体电子激发温度的影响

设置RDP-LIBS的主脉冲激光能量E1=15 mJ,再加热脉冲激光能量E2=35 mJ;SP-LIBS的激光能量为50 mJ;ICCD门宽Δt=150 ns。图8所示为探测延迟在0 ~1750 ns范围内的等离子体电子激发温度的变化曲线。由图8可知,等离子体电子激发温度均随着探测延时的增加而降低,这是由于等离子体在膨胀、外扩过程中与周围环境气体不断进行能量交换,其快速冷却。当RDP-LIBS的脉冲间隔t1=4.4 μs时,等离子体电子激发温度Te的变化范围为13764~12739 K,平均等离子体电子激发温度为12783 K;当脉冲间隔为t1=4.6 μs时,等离子体电子激发温度变化范围为13795~12160 K,平均等离子体电子激发温度为12661 K;SP-LIBS的等离子体电子激发温度变化范围为12675~11611 K,平均等离子体电子激发温度为11846 K。对比SP-LIBS,RDP-LIBS能减小等离子的冷却速度,因而其电子激发温度衰减速率较慢。在RDP-LIBS条件下,等离子体电子激发温度比SP-LIBS下的提高了937 K,说明光谱信号增强能增加等离子体电子激发温度。

图 8. 等离子体电子激发温度随探测延时的变化曲线

Fig. 8. Electron excitation temperature of plasma versus detection delay

下载图片 查看所有图片

3.5.2 探测延时对等离子体电子数密度的影响

黄连样品中的等离子体电子数密度为

Ne=Δλ122ω×1016,(1)

式中Δλ1/2为待测元素谱线的半峰全宽,可通过Lorentz拟合得到;ω为电子碰撞参数,可根据计算出的等离子体电子激发温度表得到[25]图9所示为探测延迟在0~1750 ns范围内的等离子体电子数密度的变化曲线。由图9可知,等离子体电子数密度随探测延迟的增大而不断减小,当RDP-LIBS脉冲间隔t1=4.4 μs时,等离子体电子数密度变化范围为3.66×1016~1.58×1016 cm-3,平均电子数密度为2.41×1016 cm-3;当RDP-LIBS脉冲间隔t1=4.6 μs时,等离子体电子数密度变化范围为3.38×1016~1.52×1016 cm-3,平均电子数密度2.28×1016 cm-3;SP-LIBS的等离子体电子数密度变化范围为1.85×1016~1.28×1016 cm-3,平均电子数密度1.50×1016 cm-3。实验结果表明,RDP-LIBS信号的增强和等离子体电子数密度的增加有关;另外,SP-LIBS的电子数密度的衰减速度比RDP-LIBS的快,这是由于RDP-LIBS的等离子体冷却速率较慢。

图 9. 等离子体电子数密度随探测延时的变化曲线

Fig. 9. Electron number density of plasma versus detection delay

下载图片 查看所有图片

3.5.3 局部热平衡验证

由于所采集的谱线均未发现明显的自吸收现象,因此在计算等离子体参数时可假设其满足局部热动平衡(LTE),一般通过McWhirter准则来验证:

Ne1.6×1012×Te12(ΔE)3,(2)

式中ΔE为上下能级间的最大能量差 。本实验中黄连样品的等离子体电子激发温度范围为11611~13795 K,由表2可知ΔE=3.8986 eV,由(2)式可得,电子数密度Ne的最小值为1.11×1016 cm-3,满足LTE条件。

4 结论

选用4条特征谱线Fe I (358.17 nm)、Al I (396.15 nm)、 Ca II (393.37 nm)、CN (388.34 nm)对RDP-LIBS实验参数进行优化,当探测延时为1.5 μs,主脉冲能量为15 mJ,再加热脉冲能量为35 mJ,脉冲间隔为4.4 μs时,RDP-LIBS获得最大的光谱信号增强。与SP-LIBS结果相比,4条特征谱线的增强倍数分别为4.0,5.5,10.0和3.5。同时研究了LIBS实验中等离子体的电子激发温度和电子数密度随探测延时的演化规律,取最优脉冲间隔4.4 μs时,RDP-LIBS的黄连样品等离子体电子激发温度和电子数密度平均值分别为12783 K与2.41×1016 cm-3,与SP-LIBS实验结果相比,等离子体电子激发温度提高了937 K,电子数密度增大了0.91×1016 cm-3,表明RDP-LIBS可以提高中药材的光谱特性。

参考文献

[1] Kalny P, Fijałek Z, Daszczuk A, et al. Determination of selected microelements in polish herbs and their infusions[J]. Science of the Total Environment, 2007, 381(1/2/3): 99-104.

    Kalny P, Fijałek Z, Daszczuk A, et al. Determination of selected microelements in polish herbs and their infusions[J]. Science of the Total Environment, 2007, 381(1/2/3): 99-104.

[2] Yuan X, Koh H L, Chui W K. The analysis of heavy metals in Chinese herbal medicine by flow injection-mercury hydride system and graphite furnace atomic absorption spectrometry[J]. Phytochemical Analysis, 2009, 20(4): 293-297.

    Yuan X, Koh H L, Chui W K. The analysis of heavy metals in Chinese herbal medicine by flow injection-mercury hydride system and graphite furnace atomic absorption spectrometry[J]. Phytochemical Analysis, 2009, 20(4): 293-297.

[3] Arpadjan S, Celik G, Taşkesen S, et al. Arsenic, cadmium and lead in medicinal herbs and their fractionation[J]. Food and Chemical Toxicology, 2008, 46(8): 2871-2875.

    Arpadjan S, Celik G, Taşkesen S, et al. Arsenic, cadmium and lead in medicinal herbs and their fractionation[J]. Food and Chemical Toxicology, 2008, 46(8): 2871-2875.

[4] Senila M, Drolc A, Pintar A, et al. Validation and measurement uncertainty evaluation of the ICP-OES method for the multi-elemental determination of essential and nonessential elements from medicinal plants and their aqueous extracts[J]. Journal of Analytical Science and Technology, 2014, 5: 37.

    Senila M, Drolc A, Pintar A, et al. Validation and measurement uncertainty evaluation of the ICP-OES method for the multi-elemental determination of essential and nonessential elements from medicinal plants and their aqueous extracts[J]. Journal of Analytical Science and Technology, 2014, 5: 37.

[5] Zheng P C, Liu H D, Wang J M. et al. Online mercury determination by laser-induced breakdown spectroscopy with assistance of solution cathode glow discharge[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(4): 867-874.

    Zheng P C, Liu H D, Wang J M. et al. Online mercury determination by laser-induced breakdown spectroscopy with assistance of solution cathode glow discharge[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(4): 867-874.

[6] Wang J M, Liao X Y, Zheng P C, et al. Classification of Chinese herbal medicine by laser induced breakdown spectroscopy with principal component analysis and artificial neural network[J]. Analytical Letters, 2018, 51(4): 575-586.

    Wang J M, Liao X Y, Zheng P C, et al. Classification of Chinese herbal medicine by laser induced breakdown spectroscopy with principal component analysis and artificial neural network[J]. Analytical Letters, 2018, 51(4): 575-586.

[7] 王彩虹, 黄林, 杨晖, 等. 蔬菜中Ca含量的LIBS快速检测研究[J]. 江西农业大学学报, 2016, 38(3): 483-487.

    王彩虹, 黄林, 杨晖, 等. 蔬菜中Ca含量的LIBS快速检测研究[J]. 江西农业大学学报, 2016, 38(3): 483-487.

    Wang C H, Huang L, Yang H, et al. Rapid detection of Ca in vegetables by LIBS[J]. Acta Agriculturae Universitatis Jiangxiensis, 2016, 38(3): 483-487.

    Wang C H, Huang L, Yang H, et al. Rapid detection of Ca in vegetables by LIBS[J]. Acta Agriculturae Universitatis Jiangxiensis, 2016, 38(3): 483-487.

[8] Yi R X, Guo L B, Zou X H, et al. Background removal in soil analysis using laser-induced breakdown spectroscopy combined with standard addition method[J]. Optics Express, 2016, 24(3): 2607-2618.

    Yi R X, Guo L B, Zou X H, et al. Background removal in soil analysis using laser-induced breakdown spectroscopy combined with standard addition method[J]. Optics Express, 2016, 24(3): 2607-2618.

[9] Guo L B, Hao Z Q, Shen M, et al. Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy[J]. Optics Express, 2013, 21(15): 18188-18195.

    Guo L B, Hao Z Q, Shen M, et al. Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy[J]. Optics Express, 2013, 21(15): 18188-18195.

[10] 杨宇翔, 康娟, 王亚蕊, 等. 水中铅元素的激光诱导击穿光谱-激光诱导荧光超灵敏检测[J]. 光学学报, 2017, 37(11): 1130001.

    杨宇翔, 康娟, 王亚蕊, 等. 水中铅元素的激光诱导击穿光谱-激光诱导荧光超灵敏检测[J]. 光学学报, 2017, 37(11): 1130001.

    Yang Y X, Kang J, Wang Y R, et al. Super sensitive detection of lead in water by laser-induced breakdown spectroscopy combined with laser-induced fluorescence technique[J]. Acta Optica Sinica, 2017, 37(11): 1130001.

    Yang Y X, Kang J, Wang Y R, et al. Super sensitive detection of lead in water by laser-induced breakdown spectroscopy combined with laser-induced fluorescence technique[J]. Acta Optica Sinica, 2017, 37(11): 1130001.

[11] Babushok V I. De Lucia F C, Gottfried J L, et al. Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2006, 61(9): 999-1014.

    Babushok V I. De Lucia F C, Gottfried J L, et al. Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2006, 61(9): 999-1014.

[12] Scaffidi J, Angel S M, Cremers D A. Emission enhancement mechanisms in dual-pulse LIBS[J]. Analytical Chemistry, 2006, 78(1): 24-32.

    Scaffidi J, Angel S M, Cremers D A. Emission enhancement mechanisms in dual-pulse LIBS[J]. Analytical Chemistry, 2006, 78(1): 24-32.

[13] Stratis D N, Eland K L, Angel S M. Dual-pulse LIBS:Why are two lasers better than one?[J]. Proceedings of SPIE, 1999, 3853: 385-392.

    Stratis D N, Eland K L, Angel S M. Dual-pulse LIBS:Why are two lasers better than one?[J]. Proceedings of SPIE, 1999, 3853: 385-392.

[14] Uebbing J, Brust J, Sdorra W, et al. Reheating of a laser-produced plasma by a second pulse laser[J]. Applied Spectroscopy, 1991, 45(9): 1419-1423.

    Uebbing J, Brust J, Sdorra W, et al. Reheating of a laser-produced plasma by a second pulse laser[J]. Applied Spectroscopy, 1991, 45(9): 1419-1423.

[15] Ahmed R, Iqbal J, Aslam Baig M. Effects of laser wavelengths and pulse energy ratio on the emission enhancement in dual pulse LIBS[J]. Laser Physics Letters, 2015, 12(6): 066102.

    Ahmed R, Iqbal J, Aslam Baig M. Effects of laser wavelengths and pulse energy ratio on the emission enhancement in dual pulse LIBS[J]. Laser Physics Letters, 2015, 12(6): 066102.

[16] St-Onge L, Detalle V, Sabsabi M. Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd∶YAG laser pulses[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2002, 57(1): 121-135.

    St-Onge L, Detalle V, Sabsabi M. Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd∶YAG laser pulses[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2002, 57(1): 121-135.

[17] Hussain A, Gao X, Hao Z, et al. Combined effects of double pulses and magnetic field on emission enhancement of laser-induced breakdown spectroscopy from aluminum plasma[J]. Optik-International Journal for Light and Electron Optics, 2016, 127(20): 10024-10030.

    Hussain A, Gao X, Hao Z, et al. Combined effects of double pulses and magnetic field on emission enhancement of laser-induced breakdown spectroscopy from aluminum plasma[J]. Optik-International Journal for Light and Electron Optics, 2016, 127(20): 10024-10030.

[18] Ahmed R, Baig M A. A comparative study of enhanced emission in double pulse laser induced breakdown spectroscopy[J]. Optics & Laser Technology, 2015, 65: 113-118.

    Ahmed R, Baig M A. A comparative study of enhanced emission in double pulse laser induced breakdown spectroscopy[J]. Optics & Laser Technology, 2015, 65: 113-118.

[19] Lei W, Motto-Ros V, Boueri M, et al. Time-resolved characterization of laser-induced plasma from fresh potatoes[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2009, 64(9): 891-898.

    Lei W, Motto-Ros V, Boueri M, et al. Time-resolved characterization of laser-induced plasma from fresh potatoes[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2009, 64(9): 891-898.

[20] 王琦, 董凤忠, 梁云仙, 等. 再加热双脉冲与单脉冲激光诱导Fe等离子体发射光谱实验对比研究[J]. 光学学报, 2011, 31(10): 1030002.

    王琦, 董凤忠, 梁云仙, 等. 再加热双脉冲与单脉冲激光诱导Fe等离子体发射光谱实验对比研究[J]. 光学学报, 2011, 31(10): 1030002.

    Wang Q, Dong F Z, Liang Y X, et al. Experimental comparison investigate on emission spectra of reheating double and single laser-induced Fe plasmas[J]. Acata Optical Sinica, 2011, 31(10): 1030002.

    Wang Q, Dong F Z, Liang Y X, et al. Experimental comparison investigate on emission spectra of reheating double and single laser-induced Fe plasmas[J]. Acata Optical Sinica, 2011, 31(10): 1030002.

[21] Chen F F, Su X J, Zhou W D. Effect of parameters on Si plasma emission in collinear double-pulse laser-induced breakdown spectroscopy[J]. Frontiers of Physics, 2015, 10: 104207.

    Chen F F, Su X J, Zhou W D. Effect of parameters on Si plasma emission in collinear double-pulse laser-induced breakdown spectroscopy[J]. Frontiers of Physics, 2015, 10: 104207.

[22] Benedetti P A, Cristoforetti G, Legnaioli S, et al. Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2005, 60(11): 1392-1401.

    Benedetti P A, Cristoforetti G, Legnaioli S, et al. Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2005, 60(11): 1392-1401.

[23] Rashid B, Ahmed R, Ali R, et al. A comparative study of single and double pulse of laser induced breakdown spectroscopy of silver[J]. Physics of Plasmas, 2011, 18(7): 073301.

    Rashid B, Ahmed R, Ali R, et al. A comparative study of single and double pulse of laser induced breakdown spectroscopy of silver[J]. Physics of Plasmas, 2011, 18(7): 073301.

[24] Sobral H, Villagrán-Muniz M, Navarro-Gonzalez R, et al. Temporal evolution of the shock wave and hot core air in laser induced plasma[J]. Applied Physics Letters, 2000, 77(20): 3158-3160.

    Sobral H, Villagrán-Muniz M, Navarro-Gonzalez R, et al. Temporal evolution of the shock wave and hot core air in laser induced plasma[J]. Applied Physics Letters, 2000, 77(20): 3158-3160.

[25] Griem HR. Spectral line broadening by plasma[M]. New York: Academic Press, 1974: 342.

    Griem HR. Spectral line broadening by plasma[M]. New York: Academic Press, 1974: 342.

王金梅, 郑慧娟, 郑培超, 谭癸宁. 正交再加热双脉冲激光诱导黄连等离子体的光谱特性[J]. 中国激光, 2018, 45(7): 0702006. Jinmei Wang, Huijuan Zheng, Peichao Zheng, Guining Tan. Spectral Characteristics of Coptis Chinensis Plasma Induced by Orthogonal Re-Heating Double-Pulse Laser[J]. Chinese Journal of Lasers, 2018, 45(7): 0702006.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!