作者单位
摘要
1 吉林大学白求恩第一医院核医学科,吉林 长春 130021
2 空军航空大学航空基础学院,吉林 长春 130022
3 吉林大学原子与分子物理研究所,吉林 长春 130012
提高激光诱导击穿光谱(LIBS)的信号强度是提高LIBS探测灵敏度的重要途径。本文以铜靶为烧蚀样品,研究了大气环境中不同空间约束壁数(0、2、3、4)和圆柱形约束壁对激光诱导Cu等离子体光谱的影响,并通过Boltzmann图方法测量了等离子体的电子温度。实验结果表明:当使用约束壁约束Cu等离子体时,Cu原子谱线强度、信背比和电子温度均比不存在约束时明显提高;随着腔体约束壁数增加,Cu原子谱线强度、信背比和电子温度逐渐提高;当腔体约束壁为圆柱形时,Cu原子谱线强度、信背比和电子温度最高。空间约束壁为圆柱形壁时空间约束对等离子体的约束效果最好,光谱信号最优。
光谱学 激光诱导击穿光谱 空间约束壁数 光谱增强 电子温度 
中国激光
2022, 49(6): 0611001
作者单位
摘要
河南科技大学物理工程学院, 河南 洛阳 471023
光谱信号增强是提高激光诱导击穿光谱技术分析性能的重要手段之一, 对等离子体进行空间约束由于装置简单且约束效果好而常被采用, 等离子体的特性会直接影响空间约束的效果, 而等离子体的特性与实验系统中激光的聚焦情况密切相关, 为研究激发光源的聚焦情况对半球形空腔约束等离子体光谱增强特性的影响, 通过控制透镜到样品之间的距离(LTSD)来改变激光的聚焦位置, 分别在无约束和有半球形空腔约束两种实验条件下, 烧蚀合金钢产生等离子体, 采集15个不同LTSD位置时等离子体的时间演变光谱, 得到谱线强度和增强倍数随着LTSD和采集延时的二维空间分布图。 研究结果发现: 无约束情况下, 谱线强度分别在LTSD为94和102 mm时出现峰值, 在采集延时小于8 μs时, 谱线强度的最大值在LTSD为94 mm的位置, 采集延时大于8 μs后, 谱线强度的最大值出现在LTSD为102 mm的位置; 当用半球空腔约束等离子体, 谱线强度先后在采集延时范围为4~10和12~15 μs出现第一次增强和第二次增强。 谱线强度出现第二次增强的主要原因是被半球腔内壁反射的冲击波与等离子体相互作用后会继续向前传播, 遇到另一侧的腔壁再次被反射, 进而对等离子体产生二次压缩。 分析增强倍数随LTSD和采集延时的二维变化关系发现, 第一次增强的最大增强倍数随LTSD的变化没有明显规律, 增强倍数在2~6之间波动; 谱线第二次增强时的增强倍数相对较高, 最大增强倍数随着LTSD变化呈现出先增大再减小, 然后再小幅增加后降低的变化规律, 在LTSD为96 mm时达到最大值, 两条谱线的最大增强倍数约为6倍。 分析出现最大增强倍数对应的延迟时间发现, 第一次增强出现的最优延迟时间在6~9 μs之间变化, 当LTSD在85~93 mm范围时, 最优延迟时间保持不变, 当LTSD在94~105 mm时, 出现先降低再增大的变化规律; 第二次增强出现的延迟时间主要在14~15 μs, 随着LTSD的变化没有明显的变化规律。
激光诱导等离子体 半球腔约束 光谱增强 聚焦位置 Laser-induced plasma Hemispherical cavity confinement Spectral enhancement Focusing position 
光谱学与光谱分析
2021, 41(11): 3577
作者单位
摘要
1 空军航空大学 航空基础学院,吉林 长春 130022
2 空军航空大学 作战勤务学院,吉林 长春 130022
3 吉林大学第一医院 核医学科,吉林 长春 130021
4 吉林大学 原子与分子物理研究所,吉林 长春 130012
升高样品温度和采用空间约束能提高激光诱导击穿光谱的信号强度,两种技术的结合可以进一步提高激光诱导击穿光谱的光谱强度。本文在空气环境中研究了升高样品温度和空间约束效应两种方法相结合对激光诱导击穿光谱的影响,测量了激光诱导铝等离子体的时间分辨光谱。实验结果表明:升高样品温度能增加激光诱导击穿光谱的信号强度,高温样品能耦合更多的激光能量;当圆柱形腔被用于约束等离子体时,信号强度得到了进一步提高。两个实验条件的结合对于激光诱导击穿光谱信号增强的效果明显强于单独升高样品温度或者单独采用空间约束的增强效果。单一200 °C高温下样品的Al(I) 396.2 nm线强度增加了1.4倍;单一空间约束条件下的Al(I) 396.2 nm线强度增加了1.3倍;而在200 °C和空间约束的组合条件下,Al(I) 396.2 nm线强度增加了2.1倍。这个结合效应增强效果产生主要由于激光照射高温样品产生更强的冲击波,从而能更有效地压缩高温下产生的更大尺寸的等离子体羽,进一步提高了激光诱导击穿光谱的强度。
激光诱导击穿光谱 样品温度 空间约束 光谱增强 等离子体 laser-induced breakdown spectroscopy (LIBS) sample temperature spatial confinement spectral enhancement plasma 
中国光学
2021, 14(2): 336
于丹 1孙艳 1冯志书 2代玉银 3,*[ ... ]金明星 4,*
作者单位
摘要
1 空军航空大学航空基础学院, 吉林 长春 130022
2 空军航空大学作战勤务学院, 吉林 长春 130022
3 吉林大学第一医院核医学科, 吉林 长春 130021
4 吉林大学原子与分子物理研究所, 吉林 长春 130012
激光诱导击穿光谱(LIBS)是一种快速、实时的元素成分分析技术。为了提高LIBS的灵敏度,人们已经提出多种方法来提高LIBS的光谱强度。本文采用飞秒脉冲激光烧蚀黄铜产生LIBS,对比了圆偏振和线偏振下LIBS光谱的强度,结果发现圆偏振下的光谱强度比线偏振下的强,光谱强度大约提高了15%。采用飞秒激光照射金属时,金属内部的自由电子吸收光子的能量。在线偏振飞秒激光场中,电子在脉冲的每个光学周期中经历交替的加速和减速;而圆偏振飞秒激光可以连续加速电子,因此电子可以获得更高的能量,这使得圆偏振飞秒激光产生的光谱强度不同于线偏振飞秒激光产生的光谱强度,圆偏振激光有助于改善飞秒LIBS信号的强度。
光谱学 激光诱导击穿光谱 飞秒激光 圆偏振 光谱增强 
中国激光
2021, 48(1): 0111001
作者单位
摘要
1 吉林化工学院理学院, 吉林 吉林 132022
2 吉林大学原子与分子物理研究所, 吉林 长春 130012
3 吉林大学吉林省应用原子分子光谱重点实验室, 吉林 长春 130012
在大气环境中,研究平行板约束对激光诱导PMMA等离子体中CN分子光谱的影响,测量得到的5条光谱峰所处波长分别为388.29 nm(0-0)、387.0 nm(1-1)、386.14 nm(2-2)、385.44 nm(3-3)及385.03 nm(4-4)。实验结果表明,空间约束下的CN分子光谱峰强度明显高于无空间约束下的。另外,通过拟合CN光谱获得了CN分子的振动温度,结果显示,空间约束下的CN分子的振动温度明显高于无空间约束下的振动温度,且高激光能量下的CN分子振动温度高于低激光能量下的振动温度。平行板反射冲击波压缩等离子体羽,使得其温度和数密度增加,增强了激光诱导PMMA等离子体中CN分子的光谱强度。
光谱学 激光诱导击穿光谱 空间约束 光谱增强 振动温度 
中国激光
2020, 47(8): 0811002
作者单位
摘要
河南科技大学 物理工程学院, 河南 洛阳 471023
为了增强激光诱导玻璃等离子体的辐射光谱信号, 采用直径为10 mm的玻璃纤维材质半球空腔对等离子体进行束缚, 对比研究了无约束和约束两种实验条件下的辐射光谱信号.由于激光的聚焦情况对玻璃等离子体特性有较大影响, 实验首先对激光在样品中的聚焦位置进行了优化, 结果表明当样品表面位于透镜焦平面以上3 mm处时激光诱导玻璃等离子体辐射光谱最强.然后采用时间分辨光谱对比研究了无约束和半球空腔约束下光谱强度的时间演变规律, 并分析了谱线强度增大倍数的时间演变, 结果表明在等离子体产生后6~15 μs的时间内, 半球空腔约束下谱线强度呈现出增强的现象, 且具有不同能级的谱线增强程度不同, 当采集延时为10 μs时具有最优增强效果.最后研究了激光能量对半球空腔约束下等离子体辐射增强效果的影响, 研究结果表明, 随着激光能量增大, 谱线增强倍数逐渐增加, 当激光能量超过170 mJ以后, 谱线增强效果开始下降.
激光诱导等离子体 半球空腔约束 光谱增强 时间演变 玻璃 Laser-induced plasma Hemispherical cavity confiment Spectral enhancement Time evolution Glass 
光子学报
2018, 47(8): 0847013
作者单位
摘要
1 长春理工大学 理学院, 长春 130022
2 长春理工大学 化学与环境工程学院, 长春 130022
建立磁约束飞秒激光诱导铜等离子体辐射光谱采集系统, 通过发射光谱法分析磁约束效应对飞秒激光诱导铜等离子体特性的影响.在强度为0.67 T的稳磁场约束下, 等离子体辐射连续谱和分立谱均有增强, 分立谱线增强更显著; 铜原子上能级越高, 其辐射的原子谱线增强因子越大, 具有最高上能级的Cu I 507.6 nm增强因子最大, 为2.8; 等离子体铜原子谱线持续时间明显延长, 在等离子体演化初期, 谱线增强显著, 在较大延时, 谱线增强迅速减弱; 等离子体电子温度和电子密度均有提高.
飞秒激光诱导击穿光谱 磁约束 光谱增强 电子温度 电子密度 Femtosecond laser-induced breakdown spectroscopy Magnetic confinement Spectral enhancement Electron temperature Electron density 
光子学报
2018, 47(8): 0847012
作者单位
摘要
吉林大学 原子与分子物理研究所, 长春 130012
以硅靶作为烧蚀样品, 研究了空气环境中空间约束的激光诱导击穿光谱.采用5×5组圆柱形约束腔来约束激光诱导的等离子体羽, 直径分别为4、6、8、10、12 mm, 深度分别为2、4、6、8、10 mm.激光脉冲的能量为70 mJ.利用Si(I)390.55 nm谱线分析了不同直径和深度的圆柱形空间约束腔对LIBS光谱强度的影响.结果表明空间约束下激光诱导硅产生的Si(I)390.55 nm光谱强度明显高于无空间约束下的光谱强度.在当前的实验条件下, 不同的约束腔的直径和深度对光谱辐射强度也有较大的影响,当圆柱形约束腔的直径和深度不同时, 获得的光谱强度也是不同的, 表明腔的尺寸对于光发射强度起很重要的作用.腔直径6 mm和深度2 mm的时候Si(I)390.55 nm谱线强度出现最大值.空间约束的增强主要来自激光诱导的等离子体时伴随产生的冲击波, 空间约束腔反弹冲击波并与等离子体进行相互作用, 致使等离子体的温度和密度增加, 最终提高等离子体的光辐射强度.
激光诱导击穿光谱 空间约束 光谱增强 Laser-induced breakdown spectroscopy Spatial confinement Spectral enhancement 
光子学报
2018, 47(8): 0847007
作者单位
摘要
重庆邮电大学光电工程学院光电信息感测与传输技术重庆市重点实验室, 重庆 400065
搭建了正交的再加热双脉冲激光诱导击穿光谱(RDP-LIBS)实验装置。以黄连为研究对象,用其特征谱线的光谱强度和信背比评估了光谱特性。通过优化探测延时、两束激光能量值组合及脉冲间隔等实验参数,提高了检测的灵敏度。相比单脉冲激光诱导击穿光谱(SP-LIBS)技术,RDP-LIBS技术对4条特征谱线(Fe、Al、Ca、CN)的光谱强度增强倍数分别为4.0,5.5,10.0和3.5。RDP-LIBS下的等离子体电子激发温度和电子数密度均比SP-LIBS下的有所提高。
激光技术 激光诱导击穿光谱(LIBS) 光谱增强 再加热双脉冲 中药材 电子激发温度 电子数密度 
中国激光
2018, 45(7): 0702006
作者单位
摘要
沈阳理工大学理学院, 辽宁 沈阳 110159
为了提高激光诱导击穿光谱的质量, 探索便捷的等离子体辐射增强方法, 采用自体空间约束的方法, 研究了铜合金自体小孔约束对激光诱导等离子体辐射的增强作用。 在常压空气中, 利用Nd∶YAG脉冲激光器作为激发源, 诱导激发HPb59-1铅黄铜合金样品, 由光栅光谱仪和ICCD采集光谱, 分析了Cu和Pb元素的等离子体辐射强度随自体小孔尺寸的变化情况, 得到自体小孔约束的最佳尺寸为直径3.0 mm、 深度1.5 mm。 与无约束时相比, Cu和Pb的谱线强度分别提高了38.3%和35.4%, 信背比提高了200.2%和137.5%。 研究结果表明, 自体小孔约束方法能够有效改善激光诱导击穿铅黄铜合金样品的谱线质量, 避免外加约束结构的内壁污染对实验结果的干扰, 方法简单易行。
激光诱导击穿光谱 自体小孔约束 光谱增强 信背比 LIBS Self-hole confinement Optical enhancement Signal-to-background ratio 
光谱学与光谱分析
2016, 36(7): 2229

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!