光子学报, 2018, 47 (8): 0847012, 网络出版: 2018-09-16  

磁约束飞秒激光诱导铜等离子体特性研究

Magnetic Confinement Effect on Femtosecond Laser-induced Copper Plasma
作者单位
1 长春理工大学 理学院, 长春 130022
2 长春理工大学 化学与环境工程学院, 长春 130022
摘要
建立磁约束飞秒激光诱导铜等离子体辐射光谱采集系统, 通过发射光谱法分析磁约束效应对飞秒激光诱导铜等离子体特性的影响.在强度为0.67 T的稳磁场约束下, 等离子体辐射连续谱和分立谱均有增强, 分立谱线增强更显著; 铜原子上能级越高, 其辐射的原子谱线增强因子越大, 具有最高上能级的Cu I 507.6 nm增强因子最大, 为2.8; 等离子体铜原子谱线持续时间明显延长, 在等离子体演化初期, 谱线增强显著, 在较大延时, 谱线增强迅速减弱; 等离子体电子温度和电子密度均有提高.
Abstract
The spectroscopy collection system of femtosecond laser-induced copper plasma with magnetic confinement was established. The magnetic confinement effects in the femtosecond laser-induced Cu plasma were investigated by optical emission spectroscopy. When plasma was confined by magnetic field with intensity of 0.67 T, the plasma emission continuous and discrete spectrum enhanced meanwhile the discrete spectrum enhanced more significantly. The enhancement factor of Cu atomic line with higher upper level energy is larger. The Cu I 507.6 nm is emitted from the highest upper level energy; its enhancement factor is largest and could be up to 2.8. The persistence duration of copper atomic spectra last longer. The copper atomic spectra enhanced significantly in the early delay time and weakly in late delay time. The electron temperature and number density of plasma in magnetic filed improved.
参考文献

[1] NICOLAS G, MATEO M P, PION V, et al. 3D chemical maps of non-flat surfaces by laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 2007,22: 1244-1249.

[2] SUYANTO H, RUPIASIH N N, WINARDI T B, et al. Qualitative analysis of Pb liquid sample using laser-induced breakdown spectroscopy (LIBS)[C]. Conference Proceedings, 2013, 1555(1): 14-16.

[3] HOHREITER V, HAHN D W. Calibration effects for laser-induced breakdown spectroscopy of gaseous sample streams: analyte response of gas-phase species versus solid-phase species[J]. Analytical chemistry, 2005, 77(4): 1118-1124.

[4] TOGNONI E, PALLESCHI V, CORSI M, et al. Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches[J].Spectrochimica Acta Part B: Atomic Spectroscopy, 2002, 57(7): 1115-1130.

[5] 杜闯,高勋,邵妍,等. 土壤中重金属元素的双脉冲激光诱导击穿光谱研究[J]. 物理学报,2013, 62(04): 357-362.

    DU Chuang, GAO Xun, SHAO Yan, et al. Analyses of heavy metals by soil using dual-pulsedlaser induced breakdown spectroscopy[J]. Acta Physica Sinica, 2013, 62(04): 357-362.

[6] BIERSTEDT A, PANNE U, RIEDEL J. Confinement and enhancement of an airborne atmospheric laser-induced plasma by an ultrasonic acoustic resonator[J]. Journal of Analytical Atomic Spectrometry, 2018, 31(1): 135-140.

[7] ZHOU W D, LI K X, SHEN Q M, et al. Optical emission enhancement using laser ablation combined with fast pulse discharge[J]. Optics Express, 2010,18(3): 2573-2578.

[8] REZAEI F, TAVASSOLI S H. Quantitative analysis of aluminum samples in He ambient gas at different pressures in a thick LIBS plasma[J]. Applied Physics B, 2015, 120(3), 563-571.

[9] GAO X, LIU L, SONG C, et al. The role of spatial confinement on nanosecond YAG laser-induced Cu plasma[J].Journal of Physics D: Applied Physics, 2015, 48(17): 175205.

[10] HAO Z Q, GUO L B, LI C M, et al. Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(12): 2309-2314.

[11] SHEN X K, LU Y F, GEBRE T, et al. Optical emission in magnetically confined laser-induced breakdown spectroscopy[J].Journal of Applied Physics, 2006, 100(5): 3662.

[12] LI C, GAO X, LI Q, et al. Spectral enhancement of laser-induced breakdown spectroscopy in external magnetic field[J]. Plasma Science and Technology, 2015, 17(11): 919-922.

[13] HARILAL S S, TILLACK M S, O’SHAY B, et al. Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field[J]. Physical Review E, 2004, 69(2): 026413.

[14] MYRIAM B, HAO Z Q, MATTHIEU B, et al. Femtosecond laser-induced breakdown spectroscopy for detection of trace elements in sophora leaves[J]. Chinese Physics Letters, 2007, 24(12): 3466.

[15] 高勋,杜闯,李丞,等.基于飞秒激光等离子体丝诱导击穿光谱探测土壤重金属Cr元素含量[J].物理学报,2014,63(09): 265-269.

    GAO Xun, DU Chuang, LI Cheng, et al. Detection of heavy metal Cr in soil by the femtosecond filament induced breakdown spectroscopy[J]. Acta Physica Sinica, 2014,63(09): 265-269.

[16] MATTHIEU B, JIN Y, MYRIAM B, et al. Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy[J]. Applied Physics Letters, 2006, 89(16): 163903.

[17] LI C M, GUO L B, HE X G, et al. Element dependence of enhancement in optics emission from laser-induced plasma under spatial confinement[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(4), 638-643.

[18] NEOGI A, THAREJA R K. Dynamics of laser produced carbon plasma expanding in a nonuniform magnetic field[J].Journal of Applied Physics, 1999, 85(2): 1131-1136.

[19] CIUCCI A, CORSI M, PALLESCHI V, et al. New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy[J]. Applied Spectroscopy,1999, 53(8), 960-964.

[20] GRIEM H R. Principles of plasma spectroscopy[M]. Cambridge University Press,1997.

[21] 樊娟娟, 黄丹, 王鑫, 等. 激光诱导等离子体LTE态判定方法研究[J]. 光谱学与光谱分析, 2014, 34(12): 3183-3187.

    FAN Juan-juan, HUANG Dan, WANG Xin, et al. Research on the identification method of LTE condition in the laser-induced plasma[J]. Spectroscopy and Spectral Analysis, 2014, 34(12): 3183-3187.

[22] PAGANO C, HAFEEZ S, LUNNEY J G. Influence of transverse magnetic field on expansion and spectral emission of laser produced plasma[J]. Journal of Physics D: Applied Physics, 2009, 42(15): 155205.

许东华, 宋超, 赵上勇, 高勋, 林景全. 磁约束飞秒激光诱导铜等离子体特性研究[J]. 光子学报, 2018, 47(8): 0847012. XU Dong-hua, SONG Chao, ZHAO Shang-yong, GAO Xun, LIN Jing-quan. Magnetic Confinement Effect on Femtosecond Laser-induced Copper Plasma[J]. ACTA PHOTONICA SINICA, 2018, 47(8): 0847012.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!