应用光学, 2019, 40 (1): 172, 网络出版: 2019-04-02  

光纤式微液滴光学检测与计数单元仿真分析

Simulation and analysis of micro-droplet optical detection and counting unit with optical fiber
作者单位
1 天津大学 精密仪器与光电子工程学院, 光电信息技术教育部重点实验室, 天津300072
2 天津市计量监督检测科学研究院, 天津 300192
摘要
为实现微流控芯片上微液滴的检测与计数, 设计了光纤式检测与计数单元, 使用TracePro软件进行建模仿真以便为检测信号处理提供依据。根据液滴通过检测区域时引起的光强变化来实现计数, 分析了照明光束准直性、液滴尺寸、液滴相对溶液折射率以及接收光纤相距芯片距离对光强变化的影响。仿真实验结果表明, 照明光束准直性越差, 液滴半径越大, 相对溶液折射率越低, 接收光纤距离越近, 相对光强变化越明显, 并且液滴大小决定着光强变化曲线中是否会出现双波谷现象, 液滴半径小于13 μm时, 液滴检测信号为明显的单波谷, 半径大于17 μm时, 液滴信号为明显双波谷。根据仿真结果提出了检测信号的处理方法, 表明该单元可以实现微流控芯片上微液滴的检测与计数功能。
Abstract
A detection and counting unit with optical fiber was designed for realizing the detection and counting of micro-droplets on the microfluidic chip. TracePro was used to simulate and provide the basis for detection signal processing. The system can realize the counting function according to the change of the optical intensity, which is caused by droplet passing. Simulation were carried out to analyze the influence of beam collimation, droplet size, droplet refractive index and distance from receiving fiber to chip on optical intensity. The results obtained from the simulation show that the poorer the collimation beam, the larger the droplet radius, the smaller the refractive index, and the closer the distance between receiving fiber and chips, which can cause more apparent variation in optical intensity. What’s more, the droplet size determines whether there are double valleys in the optical intensity curve. When the radius of droplet is less than 13 μm, there is one valley in the optical intensity curve. And when the radius is larger than 17 μm, there are two valleys.In addition, processing method of detecting signal was proposed based on the simulation results, showing that this optical detection unit can realize the detection and counting function of the micro-droplets on the microfluidic chip.
参考文献

[1] WHITESIDES G M. The origins and the future of microfluidics.[J]. Nature, 2006, 442(7101): 368-373.

[2] 林炳承, 秦建华. 图解微流控芯片实验室[M]. 北京: 科学出版社, 2008.

    LIN Bingcheng, QIN Jianhua. Graphic microfluidic chip [M]. Beijing: Science Press, 2008.

[3] 秦建华. 微流控技术研究的若干进展[J]. 色谱, 2010, 28(11): 1009-1010.

    QIN Jianhua, Progress in the research of microfluidic technology [J]. Chinese Journal of Chromatography, 2010, 28(11): 1009-1010.

[4] 方肇伦. 微流控分析芯片[M]. 北京: 科学出版社, 2003.

    FANG Zhaolun, Microfluidic chip [M]. Beijing: Science Press, 2003.

[5] DI C D, AGHDAM N, LEE L P. Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays[J]. Analytical Chemistry, 2006, 78(14): 4925-30.

[6] 刘赵淼, 杨洋, 杜宇,等. 微流控液滴技术及其应用的研究进展[J]. 分析化学, 2017, 45(2): 282-296.

    LIU Zhaomiao, YANG Yang, DU Yu, et al. Research progress of microfluidic droplet technology and its application [J]. Chinese Journal of Analytical Chemistry, 2017, 45(2): 282-296.

[7] 朱睿, 肖松山, 范世福. 微流控芯片检测技术进展[J]. 纳米技术与精密工程, 2005, 3(1): 74-79.

    ZHU Rui, XIAO Songshan, FAN Shifu.Developments in detection techn iques for Microfluidic Devices [J]. Nanotechnology and Precision Engineering, 2005, 3(1): 74-79.

[8] 廖锡昌, 郑慧斐, 袁敏,等. 发光二极管诱导荧光微芯片分析检测器的研制[J]. 光学精密工程, 2009, 17(12): 2906-2911.

    LIAO Xichang, ZHENG Huifei, YUAN Min, et al.High power light-emitting-diode induced fluorescence detector for microfluidic chip analysis [J]. Optics and Precision Engineering, 2009, 17(12): 2906-2911.

[9] 石岩, 王立强, 郑华,等. 提高荧光收集效率的新型微流控芯片检测系统[J]. 光电子·激光, 2008, 19(1): 92-95.

    SHI Yan, WANG Liqiang, ZHENG Hua, et al. New system arrangement for the improvement of fluorescence collecting efficiency in microfluidic chip detection [J]. Journal of Optoelectronics·Laser, 2008, 19(1): 92-95.

[10] 顾雯雯. 微流控细胞芯片LED诱导透射式荧光检测微系统[J]. 光学精密工程, 2014, 22(8): 2159-2165.

    GU Wenwen. LED induced transmitted fluorescence detector integrated in microfluidic cell chip [J]. Optics and Precision Engineering, 2014, 22(8): 2159-2165.

[11] 肖雅静. 基于图像处理的微流控芯片检测方法与技术研究[D]. 石家庄: 河北工业大学, 2011.

    XIAO Yajing. Research on the detection methods and technology of microfluidic chip based on image processing [D]. Hebei University of Technology, 2011.

[12] 曾小英, 李运华. 采用图像光测法的油液污染的在线监测与预报[J]. 液压气动与密封, 2012, 32(7): 60-65.

    ZENG Xiaoying, LI Yunhua. On-line monitoring and prediction of oil contamination using image-optics measuring method [J]. Hydraulics Pneumatics & Seals, 2012, 32(7): 60-65.

[13] 冯毅, 张春平, 张铁强. 液压油污染颗粒光电检测系统[J]. 光学技术, 2007, 33(2): 255-257.

    FENG Yi, ZHANG Chunping, ZHANG Tieqiang. An opto_electronic system for measuring the size of pollution debris in hydraulic oil [J]. Optical Technique, 2007, 33(2): 255-257.

[14] MURALI S, JAGTIANI A V, XIA X, et al. A microfluidic Coulter counting device for metal wear detection in lubrication oil.[J]. Review of Scientific Instruments, 2009, 80(1): 1011.

[15] 吴章嘉琛, 孙润哲, 潘新祥,等. 微流控芯片上水中油滴及其体积分数测量技术[J]. 微纳电子技术, 2015, 52(5): 310-317.

    WU Zhangjiachen, SUN Runzhe, PAN Xinxiang, et al. Oil Drops in the water and the oil volume fraction measurement in the microfluidic chip [J]. Micronanoelectronic Technology, 2015, 52(5): 310-317.

[16] 周镇, 苏成悦, 付倩,等. 一种基于自由曲面的LED准直透镜设计[J]. 应用光学, 2012, 33(6): 1058-1062.

    ZHOU Zhen, SU Chengyue, FU Qian, et al. LED collimatin lens based on free-form surface [J]. Journal of Applied Optics, 2012, 33(6): 1058-1062.

郎明远, 张林, 曹振忠, 黄战华. 光纤式微液滴光学检测与计数单元仿真分析[J]. 应用光学, 2019, 40(1): 172. LANG Mingyuan, ZHANG Lin, CAO Zhenzhong, HUANG Zhanhua. Simulation and analysis of micro-droplet optical detection and counting unit with optical fiber[J]. Journal of Applied Optics, 2019, 40(1): 172.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!