红外与激光工程, 2016, 45 (12): 1217005, 网络出版: 2017-01-12  

二维光栅制作与装配误差综合建模与实验研究

Synthetical modeling and experimental study of fabrication and assembly errors of two-dimensional gratings
作者单位
1 国防科学技术大学 机电工程与自动化学院, 湖南 长沙 410073
2 空军航空大学 飞行训练基地, 吉林 长春 130062
摘要
针对二维位移测量系统中光栅制作与装配非理想所引起的几何误差, 基于多普勒频移理论和坐标变换方法, 建立了同时包含光栅非正交角与装配角在内的通用几何误差模型, 定量研究了各误差角对系统性能的影响程度, 仿真分析了X与Y方向余弦误差和耦合误差随误差参数的变化规律。结果表明, 光栅制作和装配误差与系统所用衍射级次、衍射次数和光学细分倍数无关, 只与各误差角和被测位移有关。与此同时, 四个误差角都会导致余弦误差的产生, 而耦合误差则主要受光栅非正交角和偏航角的影响。此外, 相同误差角所引起的耦合误差要明显严重于余弦误差, 是系统几何误差的主要构成成分。通过搭建基于二维交叉光栅的平面位移测量系统, 利用10 mm方形运动轨迹实验验证了理论分析与数值仿真的正确性。
Abstract
The geometrical errors resulting from imperfection of the fabrication and assembly of two-dimensional(2D) grating were investigated. Based on the Doppler frequency shift theory and the coordinate transformation method, the general error model versus non-orthogonal and misalignment angles of 2D gratings was established. Then the effects of these error angles were quantitatively studied, and the cosine and the cross-talk errors of both directions were simulated and analyzed. The results illustrated that the geometrical errors were independent from the diffraction orders, diffraction times and the optical subdivision multiple, just determined by the error angles and the 2D displacement. Meanwhile, the cosine errors could be induced by all the error angles, but the cross-talk errors were mainly influenced by the non-orthogonal and raw angles. Besides, the cross-talk errors were more serious than the cosine errors, which is the dominant component of the geometrical errors. A planar displacement measurement system with 2D cross-grating was constructed, and the theoretical analyses and the numerical simulation were verified with the 10 mm square displacement measurement.
参考文献

[1] 伍剑, 袁波, 王立强. 单光栅数字莫尔位移测量法[J]. 红外与激光工程, 2014, 43(10): 3404-3409.

    Wu Jian, Yuan Bo, Wang Liqiang. New displacement measurement method based on digital Moiré fringes formed by a single grating[J]. Infrared and Laser Engineering, 2014, 43(10): 3404-3409. (in Chinese)

[2] Lin Cunbao, Yan Shuhua, Du Zhiguang, et al. Symmetrical short-period and high signal-to-noise ratio heterodyne grating interferometer[J]. Chinese Optics Letters, 2015, 13(10): 100501.

[3] Hsieh H, Pan S. Development of a grating-based interferometer for six-degree-of-freedom displacement and angle measurements[J]. Optics Express, 2015, 23(3): 2451-2465.

[4] 糜小涛, 于宏柱, 于海利, 等. 大型衍射光栅刻划机拉杆结构的分析与改进[J]. 光学 精密工程, 2015, 23(3): 745-752.

    Mi Xiaotao, Yu Hongzhu, Yu Haili, et al. Analysis and improvement of rod structures for large diffraction grating ruling engines[J]. Optics and Precision Engineering, 2015, 23(3): 745-752. (in Chinese)

[5] 姜岩秀, 巴音贺希格, 赵旭龙, 等. 自由电子激光器用极紫外波段平面变栅距光栅[J]. 光学 精密工程, 2015, 23(8): 2117-2124.

    Jiang Yanxiu, Bayan Heshig, Zhao Xulong, et al. Plane holographic varied-line-space grating for DCLS in EUV region[J]. Optics and Precision Engineering, 2015, 23(8): 2117-2124. (in Chinese)

[6] Liu Yongmeng, Yuan Maoqiang, Cao Jieru, et al. Use of two planar gratings to measure 3-DOF displacements of planar moving stage[J]. IEEE Transactions on Instrumentation & Measurement, 2015, 64(1): 163-169.

[7] Wang Xuanze, Dong Xiaohua, Guo Jun, et al. Two-dimensional displacement sensing using a cross diffraction grating scheme[J]. Journal of Optics A: Pure and Applied Optics, 2004, 6(1): 106-111.

[8] Hsieh H, Chen J, Leronde G, et al. Two-dimensional displacement measurement by quasi-common-optical path heterodyne grating interferometer[J]. Optics Express, 2011, 19(10): 9770-9782.

[9] 贤光, 颜昌翔. 姿态变化对航空推扫式成像的影响分析[J]. 红外与激光工程, 2015, 44(8): 2178-2183.

    Xian Guang, Yan Changxiang. Analysis of attitude change impact on aerial push-broom imaging[J]. Infrared and Laser Engineering, 2015, 44(8): 2178-2183. (in Chinese)

[10] Lin Cunbao, Yan Shuhua, Du Zhiguang, et al. High-efficiency gold-coated cross-grating for heterodyne grating interferometer with improved signal contrast and optical subdivision[J]. Optics Communications, 2015, 339(15): 86-93.

[11] 杨东兴, 颜树华, 杜列波, 等. 一种小型化纳米级单光栅位移测量系统的研制[J].红外与激光工程, 2013, 42(4): 1020-1025.

    Yang Dongxing, Yan Shuhua, Du Liebo, et al. Design of a miniature single-grating displacement measuring system with nanometer resolution[J]. Infrared and Laser Engineering, 2013, 42(4): 1020-1025. (in Chinese)

[12] 彭利荣, 马占龙, 王高文, 等. 超薄光学元件精密加工关键技术[J]. 中国光学, 2015, 8(6): 964-970.

    Peng Lirong, Ma Zhanlong, Wang Gaowen, et al. Key technology of ultra-thin optical element precision manufacture[J]. Chinese Optics, 2015, 8(6): 964-970. (in Chinese)

[13] 陶小平. 大口径反射镜加工机床在线检测高精度对准方法[J]. 中国光学, 2015, 8(6): 1027-1034.

    Tao Xiaoping. Precise alignment method of online optical testing for large-aperture mirror fabrication[J]. Chinese Optics, 2015, 8(6): 1027-1034. (in Chinese)

[14] Awtar S, Slocum A. Target block alignment error in XY stage metrology[J]. Precision Engineering, 2007, 31(3): 185-187.

林存宝, 颜树华, 由福盛, 杜志广. 二维光栅制作与装配误差综合建模与实验研究[J]. 红外与激光工程, 2016, 45(12): 1217005. Lin Cunbao, Yan Shuhua, You Fusheng, Du Zhiguang. Synthetical modeling and experimental study of fabrication and assembly errors of two-dimensional gratings[J]. Infrared and Laser Engineering, 2016, 45(12): 1217005.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!