人工晶体学报, 2020, 49 (8): 1361, 网络出版: 2020-11-11   

掺Er3+晶体近3 μm中红外激光研究进展

Research Progress of Near 3 μm Mid-infrared Laser Based on Er3+ Doped Single Crystals
张振 1苏良碧 1,2,*
作者单位
1 中国科学院上海硅酸盐研究所, 上海 200050
2 中国科学院大学材料科学与光电技术学院, 北京 100049
引用该论文

张振, 苏良碧. 掺Er3+晶体近3 μm中红外激光研究进展[J]. 人工晶体学报, 2020, 49(8): 1361.

ZHANG Zhen, SU Liangbi. Research Progress of Near 3 μm Mid-infrared Laser Based on Er3+ Doped Single Crystals[J]. Journal of Synthetic Crystals, 2020, 49(8): 1361.

参考文献

[1] Frauchiger J, Lüthy W. Interaction of 3 μm radiation with matter[J]. Optical and Quantum Electronics, 1987, 19(4): 231-236.

[2] Heifer D, Frenz M, Romano V, et al. Fibre-end micro-lens system for endoscopic erbium-laser surgery applications[J]. Applied Physics B, 1994, 58(4): 309-315.

[3] Lancaster A, Cook G, McDaniel S A, et al. Mid-infrared laser emission from Fe∶ZnSe cladding waveguides[J]. Applied Physics Letters, 2015, 107(3): 031108.

[4] Allik T H, Chandra S, Rines D M, et al. Tunable 7-12 μm optical parametric oscillator using a Cr, Er∶YSGG laser to pump CdSe and ZnGeP2 crystals[J]. Optics Letters, 1997, 22(9): 597-599.

[5] Walsh B M, Lee H R, Barnes N P. Mid infrared lasers for remote sensing applications[J]. Journal of Luminescence, 2016, 169: 400-405.

[6] Board S S, National Research Council. Earth science and applications from space: national imperatives for the next decade and beyond[M]. Washington: National Academies Press, 2007.

[7] Gebbie H A, Harding W R, Hilsum C, et al. Atmospheric transmission in the 1 to 14 μm region[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1951, 206(1084): 87-107.

[8] Bekman H H P T, Van Den Heuvel J C, Van Putten F J M, et al. Development of a mid-infrared laser for study of infrared countermeasures techniques[C]//Technologies for Optical Countermeasures. International Society for Optics and Photonics, 2004, 5615: 27-38.

[9] Pollack S A, Chang D B. Ion-pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2, and CaF2 crystals[J]. Journal of Applied Physics, 1988, 64(6): 2885-2893.

[10] Stoneman R C, Esterowitz L. Efficient resonantly pumped 2.8 μm Er3+: GSGG laser[J]. Optics Letters, 1992, 17(11): 816-818.

[11] Zharikov E V, Zhekov V I, Kulevskii L A, et al. Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ=2.94 μ[J]. Soviet Journal of Quantum Electronics, 1975, 4(8): 1039.

[12] Pollnau M. Analysis of heat generation and thermal lensing in erbium 3-μm lasers[J]. IEEE Journal of Quantum Electronics, 2003, 39(2): 350-357.

[13] Robinson M, Devor D P. Thermal switching of laser emission of Er3+ at 2.69 μ and Tm3+ at 1.86 μ in mixed crystals of CaF2∶ErF3∶TmF3[J]. Applied Physics Letters, 1967, 10(5): 167-170.

[14] Yariv A, Gordon J P. The laser[J]. Proceedings of the IEEE, 1963, 51(1): 4-29.

[15] Bagdasarov K S, Zhekov V I, Lobachev V A, et al. Steady-state emission from a Y3Al5O12∶Er3+ laser (λ=2.94 μ, T=300 K)[J]. Soviet Journal of Quantum Electronics, 1983, 13(2): 262.

[16] Kintz G J, Allen R, Esterowitz L. Cw and pulsed 2.8 μm laser emission from diode-pumped Er3+∶LiYF4 at room temperature[J]. Applied Physics Letters, 1987, 50(22): 1553-1555.

[17] Quimby R S, Miniscalco W J. Continuous-wave lasing on a self-terminating transition[J]. Applied Optics, 1989, 28(1): 14-16.

[18] Basiev T T, Kharikov E V, Zhekov V I, et al. Radiative and nonradiative transitions exhibited by Er3+ ions in mixed yttrium-erbium aluminum garnets[J]. Soviet Journal of Quantum Electronics, 1976, 6(7): 796.

[19] Pollack S A, Chang D B. Upconversion-pumped population kinetics for 4I13/2 and 4I11/2 laser states of Er3+ ion in several host crystals[J]. Optical and Quantum Electronics, 1990, 22(1): S75-S93.

[20] Stoneman R C, Lynn J G, Esterowitz L. Direct upper-state pumping of the 2.8 μm, Er3+: YLF laser[J]. IEEE Journal of Quantum Electronics, 1992, 28(4): 1041-1045.

[21] Pollnan M, Jackson S D. Erbium 3 μm fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(1): 30-40.

[22] Pollnau M, Graf T, Balmer J E, et al. Explanation of the CW operation of the Er3+ 3-μm crystal laser[J]. Physical Review A, 1994, 49(5): 3990.

[23] Eichler H J, Findeisen J, Liu B, et al. Highly efficient diode-pumped 3 μm Er3+: BaY2F8 laser[J]. IEEE Journal on Selected Topics in Quantum Electronics, 1997, 3(1): 90-94.

[24] Brierley M C, France P W. Continuous wave lasing at 2.7 μm in an erbium-doped fluorozirconate fibre[J]. Electronics Letters, 1988, 24(15): 935-937.

[25] Xie P, Rand S C. Continuous-wave, pair-pumped laser[J]. Optics Letters, 1990, 15(15): 848-850.

[26] Pollnau M, Spring R, Ghisler C, et al. Efficiency of erbium 3 μm crystal and fiber lasers[J]. IEEE Journal of Quantum Electronics, 1996, 32(4): 657-663.

[27] Wyss C, Lüthy W, Weber H P, et al. Emission properties of an optimised 2.8 μm Er3+∶YLF laser[J]. Optics Communications, 1997, 139(4-6): 215-218.

[28] Chou H, Jenssen H P. Upconversion processes in Er-activated solid state laser materials[C]//Advanced Solid State Lasers. Optical Society of America, 1989: DD5.

[29] Knowles D S, Jenssen H P. Upconversion versus Pr-deactivation for efficient 3 μm laser operation in Er[J]. IEEE Journal of Quantum Electronics, 1992, 28(4): 1197-1208.

[30] Jensen T, Ostroumov V G, Huber G. Upconversion processes in Er3+∶YSGG and diode-pumped laser experiments at 2.8 μm[C]//Advanced Solid State Lasers. Optical Society of America, 1995: IL4.

[31] Pollnau M, Lüthy W, Weber H P, et al. Investigation of diode-pumped 2.8 μm laser performance in Er∶BaY2F8[J]. Optics Letters, 1996, 21(1): 48-50.

[32] Jensen T, Diening A, Huber G, et al. Investigation of diode-pumped 2.8 μm Er∶LiYF4 lasers with various doping levels[J]. Optics Letters, 1996, 21(8): 585-587.

[33] Chen D W, Fincher C L, Rose T S, et al. Diode-pumped 1-W continuous-wave Er∶YAG 3 μm laser[J]. Optics Letters, 1999, 24(6): 385-387.

[34] Basiev T T, Orlovskii Y V, Polyachenkova M V, et al. Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+∶SrF2 and Er3+∶CaF2 crystals[J]. Quantum Electronics, 2006, 36(7): 591.

[35] Li T, Beil K, Krnkel C, et al. Efficient high-power continuous wave Er∶Lu2O3 laser at 2.85 μm[J]. Optics Letters, 2012, 37(13): 2568-2570.

[36] Shen B, Kang H, Chen P, et al. Performance of continuous-wave laser-diode side-pumped Er∶YSGG slab lasers at 2.79 μm[J]. Applied Physics B, 2015, 121(4): 511-515.

[37] Sanamyan T. Efficient cryogenic mid-IR and eye-safe Er∶YAG laser[J]. JOSA B, 2016, 33(11): D1-D6.

[38] Fan M, Li T, Zhao J, et al. Continuous wave and ReS2 passively Q-switched Er∶SrF2 laser at ~3 μm[J]. Optics Letters, 2018, 43(8): 1726-1729.

[39] You L, Lu D, Pan Z, et al. High-efficiency 3 μm Er∶YGG crystal lasers[J]. Optics Letters, 2018, 43(23): 5873-5876.

[40] Liu J, Zhang F, Zhang Z, et al. Watt-level continuous-wave and high-repetition-rate mid-infrared lasers based on a Er3+-doped Ca0.8Sr0.2F2 crystal[J]. Applied Physics Express, 2019, 12(11): 115505.

[41] Wang J, Cheng T, Wang L, et al. Compensation of strong thermal lensing in an LD side-pumped high-power Er∶YSGG laser[J]. Laser Physics Letters, 2015, 12(10): 105004.

[42] Fang Z, Sun D, Luo J, et al. Thermal analysis and laser performance of a GYSGG/Cr, Er, Pr∶GYSGG composite laser crystal operated at 2.79 μm[J]. Optics Express, 2017, 25(18): 21349-21357.

[43] Xu Z, Wang P, Liu W, et al. 2.94 μm diode side pumped Er: YAG laser[C]//XXI International Symposium on High Power Laser Systems and Applications 2016. International Society for Optics and Photonics, 2017, 10254: 102540F.

[44] Schmaul B, Huber G, Clausen R, et al. Er3+∶LiYF4 continuous wave cascade laser operation at 1620 and 2810 nm at room temperature[J]. Applied Physics Letters, 1993, 62(6): 541-543.

[45] Moos H W. Spectroscopic relaxation processes of rare earth ions in crystals[J]. Journal of Luminescence, 1970, 1: 106-121.

[46] Orlovskii Y V, Basiev T T, Osiko V V, et al. Fluorescence line narrowing (FLN) and site-selective fluorescence decay of Nd3+ centers in CaF2[J]. Journal of Luminescence, 1999, 82(3): 251-258.

[47] Ma W, Qian X, Wang J, et al. Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er: SrF2 single crystals[J]. Scientific Reports, 2016, 6: 36635.

[48] Shiner B. The impact of fiber laser technology on the world wide material processing market[C]//CLEO: Applications and Technology. Optical Society of America, 2013: AF2 J. 1.

[49] Day C R, France P W, Carter S F, et al. Fluoride fibres for optical transmission[J]. Optical and Quantum Electronics, 1990, 22(3): 259-277.

[50] Caron N, Bernier M, Faucher D, et al. Understanding the fiber tip thermal runaway present in 3 μm fluoride glass fiber lasers[J]. Optics Express, 2012, 20(20): 22188-22194.

[51] Zhen Z, Wu Q, W Y, et al. Efficient 2.76 μm CW laser in extremely lightly Er doped CaF2 single crystal fiber[J]. Laser Physics Letters, 2020,17(8): 085801.

张振, 苏良碧. 掺Er3+晶体近3 μm中红外激光研究进展[J]. 人工晶体学报, 2020, 49(8): 1361. ZHANG Zhen, SU Liangbi. Research Progress of Near 3 μm Mid-infrared Laser Based on Er3+ Doped Single Crystals[J]. Journal of Synthetic Crystals, 2020, 49(8): 1361.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!