人工晶体学报, 2020, 49 (8): 1361, 网络出版: 2020-11-11   

掺Er3+晶体近3 μm中红外激光研究进展

Research Progress of Near 3 μm Mid-infrared Laser Based on Er3+ Doped Single Crystals
张振 1苏良碧 1,2,*
作者单位
1 中国科学院上海硅酸盐研究所, 上海 200050
2 中国科学院大学材料科学与光电技术学院, 北京 100049
摘要
Er3+近3 μm激光是高精度激光手术的理想光源, 此外其本身可作为中远红外激光系统的泵浦源, 对长波激光的发展具有重要价值。研究表明, Er离子间的合作上转换能够抑制激光下能级寿命过长引起的粒子阻塞, 显著提高激光效率。据此提出的“高浓度掺杂”方案造成了增益晶体严重的热效应, 限制了激光功率提升。本文简要总结了关于掺Er3+晶体激光自终止和合作上转换的研究成果, 介绍了目前实现高功率近3 μm激光的实验方案及其研究进展, 对高功率Er3+近3 μm激光的发展进行了展望。
Abstract
The Er3+ based near 3 μm laser is an ideal light source for precise laser surgery. In addition, it can be used as pump source for the mid- and far-infrared laser system, which is of great value for the development of long-wave lasers. Research shows that the cooperative up-conversion between Er ions can suppress the population bottleneck caused by the long lifetime of the laser lower energy level, which significantly improves the laser efficiency. However, the proposed “high concentration doping” scheme cause heavy thermal loads on the gain crystals, which limites the enhancement of laser power. This paper briefly summarizes the research results on the self-termination and cooperative up-conversion of Er3+-doped crystal lasers, and introduces the current experimental schemes and research progress to achieve high-power lasers near 3 μm. Finally, the development of high-power Er3+ based near 3 μm laser is prospected.
参考文献

[1] Frauchiger J, Lüthy W. Interaction of 3 μm radiation with matter[J]. Optical and Quantum Electronics, 1987, 19(4): 231-236.

[2] Heifer D, Frenz M, Romano V, et al. Fibre-end micro-lens system for endoscopic erbium-laser surgery applications[J]. Applied Physics B, 1994, 58(4): 309-315.

[3] Lancaster A, Cook G, McDaniel S A, et al. Mid-infrared laser emission from Fe∶ZnSe cladding waveguides[J]. Applied Physics Letters, 2015, 107(3): 031108.

[4] Allik T H, Chandra S, Rines D M, et al. Tunable 7-12 μm optical parametric oscillator using a Cr, Er∶YSGG laser to pump CdSe and ZnGeP2 crystals[J]. Optics Letters, 1997, 22(9): 597-599.

[5] Walsh B M, Lee H R, Barnes N P. Mid infrared lasers for remote sensing applications[J]. Journal of Luminescence, 2016, 169: 400-405.

[6] Board S S, National Research Council. Earth science and applications from space: national imperatives for the next decade and beyond[M]. Washington: National Academies Press, 2007.

[7] Gebbie H A, Harding W R, Hilsum C, et al. Atmospheric transmission in the 1 to 14 μm region[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1951, 206(1084): 87-107.

[8] Bekman H H P T, Van Den Heuvel J C, Van Putten F J M, et al. Development of a mid-infrared laser for study of infrared countermeasures techniques[C]//Technologies for Optical Countermeasures. International Society for Optics and Photonics, 2004, 5615: 27-38.

[9] Pollack S A, Chang D B. Ion-pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2, and CaF2 crystals[J]. Journal of Applied Physics, 1988, 64(6): 2885-2893.

[10] Stoneman R C, Esterowitz L. Efficient resonantly pumped 2.8 μm Er3+: GSGG laser[J]. Optics Letters, 1992, 17(11): 816-818.

[11] Zharikov E V, Zhekov V I, Kulevskii L A, et al. Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ=2.94 μ[J]. Soviet Journal of Quantum Electronics, 1975, 4(8): 1039.

[12] Pollnau M. Analysis of heat generation and thermal lensing in erbium 3-μm lasers[J]. IEEE Journal of Quantum Electronics, 2003, 39(2): 350-357.

[13] Robinson M, Devor D P. Thermal switching of laser emission of Er3+ at 2.69 μ and Tm3+ at 1.86 μ in mixed crystals of CaF2∶ErF3∶TmF3[J]. Applied Physics Letters, 1967, 10(5): 167-170.

[14] Yariv A, Gordon J P. The laser[J]. Proceedings of the IEEE, 1963, 51(1): 4-29.

[15] Bagdasarov K S, Zhekov V I, Lobachev V A, et al. Steady-state emission from a Y3Al5O12∶Er3+ laser (λ=2.94 μ, T=300 K)[J]. Soviet Journal of Quantum Electronics, 1983, 13(2): 262.

[16] Kintz G J, Allen R, Esterowitz L. Cw and pulsed 2.8 μm laser emission from diode-pumped Er3+∶LiYF4 at room temperature[J]. Applied Physics Letters, 1987, 50(22): 1553-1555.

[17] Quimby R S, Miniscalco W J. Continuous-wave lasing on a self-terminating transition[J]. Applied Optics, 1989, 28(1): 14-16.

[18] Basiev T T, Kharikov E V, Zhekov V I, et al. Radiative and nonradiative transitions exhibited by Er3+ ions in mixed yttrium-erbium aluminum garnets[J]. Soviet Journal of Quantum Electronics, 1976, 6(7): 796.

[19] Pollack S A, Chang D B. Upconversion-pumped population kinetics for 4I13/2 and 4I11/2 laser states of Er3+ ion in several host crystals[J]. Optical and Quantum Electronics, 1990, 22(1): S75-S93.

[20] Stoneman R C, Lynn J G, Esterowitz L. Direct upper-state pumping of the 2.8 μm, Er3+: YLF laser[J]. IEEE Journal of Quantum Electronics, 1992, 28(4): 1041-1045.

[21] Pollnan M, Jackson S D. Erbium 3 μm fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(1): 30-40.

[22] Pollnau M, Graf T, Balmer J E, et al. Explanation of the CW operation of the Er3+ 3-μm crystal laser[J]. Physical Review A, 1994, 49(5): 3990.

[23] Eichler H J, Findeisen J, Liu B, et al. Highly efficient diode-pumped 3 μm Er3+: BaY2F8 laser[J]. IEEE Journal on Selected Topics in Quantum Electronics, 1997, 3(1): 90-94.

[24] Brierley M C, France P W. Continuous wave lasing at 2.7 μm in an erbium-doped fluorozirconate fibre[J]. Electronics Letters, 1988, 24(15): 935-937.

[25] Xie P, Rand S C. Continuous-wave, pair-pumped laser[J]. Optics Letters, 1990, 15(15): 848-850.

[26] Pollnau M, Spring R, Ghisler C, et al. Efficiency of erbium 3 μm crystal and fiber lasers[J]. IEEE Journal of Quantum Electronics, 1996, 32(4): 657-663.

[27] Wyss C, Lüthy W, Weber H P, et al. Emission properties of an optimised 2.8 μm Er3+∶YLF laser[J]. Optics Communications, 1997, 139(4-6): 215-218.

[28] Chou H, Jenssen H P. Upconversion processes in Er-activated solid state laser materials[C]//Advanced Solid State Lasers. Optical Society of America, 1989: DD5.

[29] Knowles D S, Jenssen H P. Upconversion versus Pr-deactivation for efficient 3 μm laser operation in Er[J]. IEEE Journal of Quantum Electronics, 1992, 28(4): 1197-1208.

[30] Jensen T, Ostroumov V G, Huber G. Upconversion processes in Er3+∶YSGG and diode-pumped laser experiments at 2.8 μm[C]//Advanced Solid State Lasers. Optical Society of America, 1995: IL4.

[31] Pollnau M, Lüthy W, Weber H P, et al. Investigation of diode-pumped 2.8 μm laser performance in Er∶BaY2F8[J]. Optics Letters, 1996, 21(1): 48-50.

[32] Jensen T, Diening A, Huber G, et al. Investigation of diode-pumped 2.8 μm Er∶LiYF4 lasers with various doping levels[J]. Optics Letters, 1996, 21(8): 585-587.

[33] Chen D W, Fincher C L, Rose T S, et al. Diode-pumped 1-W continuous-wave Er∶YAG 3 μm laser[J]. Optics Letters, 1999, 24(6): 385-387.

[34] Basiev T T, Orlovskii Y V, Polyachenkova M V, et al. Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+∶SrF2 and Er3+∶CaF2 crystals[J]. Quantum Electronics, 2006, 36(7): 591.

[35] Li T, Beil K, Krnkel C, et al. Efficient high-power continuous wave Er∶Lu2O3 laser at 2.85 μm[J]. Optics Letters, 2012, 37(13): 2568-2570.

[36] Shen B, Kang H, Chen P, et al. Performance of continuous-wave laser-diode side-pumped Er∶YSGG slab lasers at 2.79 μm[J]. Applied Physics B, 2015, 121(4): 511-515.

[37] Sanamyan T. Efficient cryogenic mid-IR and eye-safe Er∶YAG laser[J]. JOSA B, 2016, 33(11): D1-D6.

[38] Fan M, Li T, Zhao J, et al. Continuous wave and ReS2 passively Q-switched Er∶SrF2 laser at ~3 μm[J]. Optics Letters, 2018, 43(8): 1726-1729.

[39] You L, Lu D, Pan Z, et al. High-efficiency 3 μm Er∶YGG crystal lasers[J]. Optics Letters, 2018, 43(23): 5873-5876.

[40] Liu J, Zhang F, Zhang Z, et al. Watt-level continuous-wave and high-repetition-rate mid-infrared lasers based on a Er3+-doped Ca0.8Sr0.2F2 crystal[J]. Applied Physics Express, 2019, 12(11): 115505.

[41] Wang J, Cheng T, Wang L, et al. Compensation of strong thermal lensing in an LD side-pumped high-power Er∶YSGG laser[J]. Laser Physics Letters, 2015, 12(10): 105004.

[42] Fang Z, Sun D, Luo J, et al. Thermal analysis and laser performance of a GYSGG/Cr, Er, Pr∶GYSGG composite laser crystal operated at 2.79 μm[J]. Optics Express, 2017, 25(18): 21349-21357.

[43] Xu Z, Wang P, Liu W, et al. 2.94 μm diode side pumped Er: YAG laser[C]//XXI International Symposium on High Power Laser Systems and Applications 2016. International Society for Optics and Photonics, 2017, 10254: 102540F.

[44] Schmaul B, Huber G, Clausen R, et al. Er3+∶LiYF4 continuous wave cascade laser operation at 1620 and 2810 nm at room temperature[J]. Applied Physics Letters, 1993, 62(6): 541-543.

[45] Moos H W. Spectroscopic relaxation processes of rare earth ions in crystals[J]. Journal of Luminescence, 1970, 1: 106-121.

[46] Orlovskii Y V, Basiev T T, Osiko V V, et al. Fluorescence line narrowing (FLN) and site-selective fluorescence decay of Nd3+ centers in CaF2[J]. Journal of Luminescence, 1999, 82(3): 251-258.

[47] Ma W, Qian X, Wang J, et al. Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er: SrF2 single crystals[J]. Scientific Reports, 2016, 6: 36635.

[48] Shiner B. The impact of fiber laser technology on the world wide material processing market[C]//CLEO: Applications and Technology. Optical Society of America, 2013: AF2 J. 1.

[49] Day C R, France P W, Carter S F, et al. Fluoride fibres for optical transmission[J]. Optical and Quantum Electronics, 1990, 22(3): 259-277.

[50] Caron N, Bernier M, Faucher D, et al. Understanding the fiber tip thermal runaway present in 3 μm fluoride glass fiber lasers[J]. Optics Express, 2012, 20(20): 22188-22194.

[51] Zhen Z, Wu Q, W Y, et al. Efficient 2.76 μm CW laser in extremely lightly Er doped CaF2 single crystal fiber[J]. Laser Physics Letters, 2020,17(8): 085801.

张振, 苏良碧. 掺Er3+晶体近3 μm中红外激光研究进展[J]. 人工晶体学报, 2020, 49(8): 1361. ZHANG Zhen, SU Liangbi. Research Progress of Near 3 μm Mid-infrared Laser Based on Er3+ Doped Single Crystals[J]. Journal of Synthetic Crystals, 2020, 49(8): 1361.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!