Frontiers of Optoelectronics, 2016, 9 (4): 535–543, 网络出版: 2017-03-09   

A tutorial introduction to graphene-microfiber waveguide and its applications

A tutorial introduction to graphene-microfiber waveguide and its applications
作者单位
Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China
摘要
Abstract
Graphene-microfiber with the advantage of graphene material and the microfiber has been hailed as a wonderful waveguide in optics. A tutorial introduction to the graphene-microfiber (GMF) waveguides including the effect of graphene on waveguide, fabrication and applications has been presented. Here, we reviewed recent progress in the graphene waveguides from mode-locking and Q-switching in fiber laser to gas sensing and optical modulation. A brief outlook for opportunities and challenges of GMF in the future has been presented. With the novel nanotechnology emerging, GMF could offer new possibilities for future-optic circuits, systems and networks.
参考文献

[1] Bonaccorso F, Sun Z, Hasan T, Ferrari A C. Graphene photonics and optoelectronics. Nature Photonics, 2010, 4(9): 611–622

[2] Avouris P. Graphene: electronic and photonic properties and devices. Nano Letters, 2010, 10(11): 4285–4294

[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197–200

[4] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008, 146(9-10): 351– 355

[5] Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K. Giant intrinsic carrier mobilities in graphene and its bilayer. Physical Review Letters, 2008, 100(1): 016602-1–016602-4

[6] Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen Y R. Gate-variable optical transitions in graphene. Science, 2008, 320 (5873): 206–209

[7] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K. Fine structure constant de.nes visual transparency of graphene. Science, 2008, 320(5881): 1308-1– 1308-7

[8] Casiraghi C, Hartschuh A, Lidorikis E, Qian H, Harutyunyan H, Gokus T, Novoselov K S, Ferrari A C. Rayleigh imaging of graphene and graphene layers. Nano Letters, 2007, 7(9): 2711–2717

[9] Almeida V R, Barrios C A, Panepucci R R, Lipson M. All-optical control of light on a silicon chip. Nature, 2004, 431(7012): 1081–1084

[10] Paci.ci D, Lezec H J, Atwater H A. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photonics, 2007, 1(7): 402–406

[11] Hu X, Jiang P, Ding C, Yang H, Gong Q. Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nature Photonics, 2008, 2(3): 185–189

[12] Seibert K, Cho G C, Kutt W, Kurz H, Reitze D H, Dadap J I, Ahn H, Downer M C, Malvezzi A M. Femtosecond carrier dynamics in graphite. Physical Review B: Condensed Matter and Materials Physics, 1990, 42(5): 2842–2851

[13] Breusing M, Ropers C, Elsaesser T. Ultrafast carrier dynamics in graphite. Physical Review Letters, 2009, 102(8): 086809-1– 086809-4

[14] Sun D, Wu Z K, Divin C, Li X, Berger C, de Heer W A, First P N, Norris T B. Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectro-scopy. Physical Review Letters, 2008, 101(15): 157402-1–157402-4

[15] Hendry E, Hale P J, Moger J, Savchenko A K, Mikhailov S A. Coherent nonlinear optical response of graphene. Physical Review Letters, 2010, 105(9): 097401-1–097401-4

[16] Zhang H, Virally S, Bao Q, Ping L K, Massar S, Godbout N, Kockaert P. Z-scan measurement of the nonlinear refractive index of graphene. Optics Letters, 2012, 37(11): 1856–1858

[17] Wu Y, Yao B, Cheng Y, Rao Y, Gong Y, Zhou X, Wu B, Chiang K S. Four-wave mixing in a micro.ber attached onto a graphene .lm. IEEE Photonics Technology Letters, 2014, 26(3): 249–252

[18] WuY,YaoBC,FengQY,CaoXL,ZhouXY,RaoYJ,GongY, Zhang W L, Wang Z G, Chen Y F, Chiang K S. Generation of cascaded four-wave-mixing with graphene-coated micro.ber. Photonics Research, 2015, 3(2): A64–A68

[19] Xia F, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P. Ultrafast graphene photodetector. Nature Nanotechnology, 2009, 4(12): 839– 843

[20] Kim K, Choi J, Kim T, Cho S, Chung H. A role for graphen in silicon-based semiconductor devices. Nature, 2011, 479((7373)): 338–344

[21] Liu M, Yin X, Zhang X. Double-layer graphene optical modulator. Nano Letters, 2012, 12(3): 1482–1485

[22] BaoQ,ZhangH,WangB,NiZ,LimCHYX,WangY,TangDY, Loh K P. Broadband graphene polarizer. Nature Photonics, 2011, 5 (7): 411–415

[23] Bao Q, Loh K P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 2012, 6(5): 3677–3694

[24] Tong L, Lou J, Mazur E. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Optics Express, 2004, 12(6): 1025–1035

[25] Tong L, Gattass R R, Ashcom J B, He S, Lou J, Shen M, Maxwell I, Mazur E. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature, 2003, 426(6968): 816–819

[26] Brambilla G, Finazzi V, Richardson D J. Ultra-low-loss optical .ber nanotaper. Optics Express, 2004, 12(10): 2258–2263

[27] Brambilla G, Xu F, Horak P, Jung Y, Koizumi F, Sessions N P, Koukharenko E, Feng X, Murugan G S, Wilkinson J S, Richardson D J. Optical .ber nanowires and microwires: fabrication and applications. Advances in Optics and Photonics, 2009, 1(1): 107– 161

[28] Liu Z B, Feng M, Jiang W S, Xin W, Wang P, Sheng Q W, Liu Y G, Wang D N, Zhou W Y, Tian J G. Broadband all-optical modulation using a graphene-covered-micro.ber. Laser Physics Letters, 2013, 10(6): 065901-1–065901-5

[29] <

    参考文献原文>Wu Y, Yao B, Cheng Y, Rao Y, Gong Y, Zhang W, Wang Z, Chen Y. Hybrid graphene-micro.ber waveguide for chemical gas sensing. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20 (1): 4400206-1–4400206-6

    Li W, Chen B, Meng C, Fang W, Xiao Y, Li X, Hu Z, Xu Y, Tong L, Wang H, Liu W, Bao J, Shen Y R. Ultrafast all-optical graphene modulator. Nano Letters, 2014, 14(2): 955–959

[30] Yao B, Wu Y, Cheng Y, Zhang A, Cong Y, Rao Y, Wang Z, Chen Y. All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/micro.ber hybrid waveguide. Sensors and Actuators B: Chemical, 2014, 194: 142–148

[31] Yao B C, Wu Y, Zhang A Q, Rao Y J, Wang Z G, Cheng Y, Gong Y, Zhang W L, Chen Y F, Chiang K S. Graphene enhanced evanescent .eld in micro.ber multimode interferometer for highly sensitive gas sensing. Optics Express, 2014, 22(23): 28154–28162

[32] Wu Y, Yao B, Zhang A, Rao Y, Wang Z, Cheng Y, Gong Y, Zhang W, Chen Y, Chiang K S. Graphene-coated micro.ber Bragg grating for high-sensitivity gas sensing. Optics Letters, 2014, 39(5): 1235– 1237

[33] Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F, Bonaccorso F, Basko D M, Ferrari A C. Graphene mode-locked ultrafast laser. ACS Nano, 2010, 4(2): 803–810

[34] He X, Liu Z, Wang D, Yang M, Liao C R, Zhao X. Passively mode-locked .ber laser based on reduced graphene oxide on micro.ber for ultra-wide-band doublet pulse generation. Journal of Lightwave Technology, 2012, 30(7): 984–989

[35] Wang J, Luo Z, Zhou M, Ye C, Fu H, Cai Z, Cheng H, Xu H, Qi W. Evanescent-light deposition of graphene onto tapered .bers for passive Q-switch and mode-locker. IEEE Photonics Journal, 2012, 4 (5): 1295–1305

[36] Sheng Q, Feng M, Xin W, Han T, Liu Y, Liu Z, Tian J. Actively manipulation of operation states in passively pulsed .ber lasers by using graphene saturable absorber on micro.ber. Optics Express, 2013, 21(12): 14859–14866

[37] Xin W, Liu Z B, Sheng Q W, Feng M, Huang L G, Wang P, Jiang W S, Xing F, Liu Y G, Tian J G. Flexible graphene saturable absorber on two-layer structure for tunable mode-locked soliton .ber laser. Optics Express, 2014, 22(9): 10239–10247

[38] He X, Wang D N, Liu Z. Pulse-width tuning in a passively mode-locked .ber laser with graphene saturable absorber. IEEE Photonics Technology Letters, 2014, 26(4): 360–363

[39] LuoZQ,WangJZ,ZhouM,XuHY,CaiZP,YeCY.Multi-wavelength mode-locked erbium-doped .ber laser based on the interaction of graphene and .ber-taper evanescent .eld. Laser Physics Letters, 2012, 9(3): 229–233

[40] Luo A, Zhu P, Liu H, Zheng X, Zhao N, Liu M, Cui H, Luo Z, Xu W. Micro.ber-based, highly nonlinear graphene saturable absorber for formation of versatile structural soliton molecules in a .ber laser. Optics Express, 2014, 22(22): 27019–27025

[41] Zhao N, Liu M, Liu H, Zheng X, Ning Q, Luo A, Luo Z, Xu W. Dual-wavelength rectangular pulse Yb-doped .ber laser using a micro.ber-based graphene saturable absorber. Optics Express, 2014, 22(9): 10906–10913

[42] Liu C, Ye C, Luo Z, Cheng H, Wu D, Zheng Y, Liu Z, Qu B. High-energy passively Q-switched 2 μmTm3+-doped double-clad .ber laser using graphene-oxide-deposited .ber taper. Optics Express, 2013, 21(1): 204–209

[43] ShengQW,FengM,XinW,GuoH,HanTY,LiYG,LiuYG, Gao F, Song F, Liu Z B, Tian J G. Tunable graphene saturable absorber with cross absorption modulation for mode-locking in .ber laser. Applied Physics Letters, 2014, 105(4): 041901-1–041901-5

[44] Ren A, Feng M, Song F, Ren Y, Yang S, Yang Z, Li Y, Liu Z, Tian J. Actively Q-switched ytterbium-doped .ber laser by an all-optical Q-switcher based on graphene saturable absorber. Optics Express, 2015, 23(16): 21490–21496

[45] Ahmad H, Dernaika M, Harun S W. All-.ber dual wavelength passive Q-switched .ber laser using a dispersion-decreasing taper .ber in a nonlinear loop mirror. Optics Express, 2014, 22(19): 22794–22801

[46] Qi Y, Liu H, Cui H, Huang Q, Ning Q, Liu M, Luo Z, Luo A, Xu W, Graphene-deposited micro.ber photonics device for ultrahigh-repetition rate pulse generation in a .ber laser. Optics Express, 2015, 23(14): 17720–17726

[47] Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z X, Loh K P, Tang D Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Advanced Functional Materials, 2009, 19(19): 3077–3083

[48] Vakil A, Engheta N. Transformation optics using graphene. Science, 2011, 332(6035): 1291–1294

[49] Yan S, Zheng B, Chen J, Xu F, Lu Y,Optical electrical current sensor utilizing a graphene-micro.ber-integrated coil resonator. Applied Physics Letters, 2015, 107: 053502-1–053502-4

[50] He X, Zhang X, Zhang H, Xu M. Graphene covered on micro.ber exhibiting polarization and polarization-dependent saturable absorp-tion. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(1): 4500107-1–4500107-7

[51] Sun X, Qiu C, Wu J, Zhou H, Pan T, Mao J, Yin X, Liu R, Gao W, Fang Z, Su Y. Broadband photodetection in a micro.ber-graphene device. Optics Express, 2015, 23(19): 25209–25216

[52] Xing X, Zheng J, Sun C, Li F, Zhu D, Lei L, Cai X, Wu T. Graphene oxide-deposited micro.ber: a new photothermal device for various microbubble generation. Optics Express, 2013, 21(26): 31862– 31871

[53] Zhu B, Ren G, Gao Y, Yang Y, Lian Y, Jian S. Graphene-coated tapered nanowire infrared probe: a comparison with metal-coated probes. Optics Express, 2014, 22(20): 24096–24103

Xiaoying HE, Min XU, Xiangchao ZHANG, Hao ZHANG. A tutorial introduction to graphene-microfiber waveguide and its applications[J]. Frontiers of Optoelectronics, 2016, 9(4): 535–543. Xiaoying HE, Min XU, Xiangchao ZHANG, Hao ZHANG. A tutorial introduction to graphene-microfiber waveguide and its applications[J]. Frontiers of Optoelectronics, 2016, 9(4): 535–543.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!