强激光与粒子束, 2012, 24 (1): 175, 网络出版: 2012-02-14   

同轴相对论返波管中波束作用过程

Wave-beam interaction in coaxial relativistic backward wave oscillator
作者单位
西北核技术研究所, 西安 710024
摘要
根据同轴相对论返波管的特点建立了物理模型, 采用时域有限差分法研究了同轴相对论返波管中波束作用过程。研究表明:同轴相对论返波管中波束作用的输出效率与两端反射系数密切相关, 而且其内部场分布特点对于提高输出效率非常有利。经过优化设计, 利用 500 keV, 4.0 kA 电子束流, 微波起振时间为7 ns, 输出效率大于38%, 与以往数值模拟和实验结果符合较好。根据计算结果进一步分析得到, 与空心相对论返波管相比, 同轴相对论返波管中空间电荷效应的影响较小。
Abstract
The physical model is established according to the characteristics of coaxial relativistic backward wave oscillator(CRBWO) to study the wave-beam interaction in CRBWO employing the finite-difference time-domain method. The research indicates that the output efficiency of the wave-beam interaction in CRBWO is sensitively dependent on the reflections on both ends of the wave-beam interaction region. And the distribution of the field in CRBWO is beneficial for the promotion of the output efficiency. In the case of electron beam of 500 keV and 4.0 kA, the calculated output efficiency more than 38% through optimizing and the starting time 7 ns agree with those obtained from previous numerical simulation and experiment results very well. The space charge effect can be considered as a small influence on the wave-beam interaction in CRBWO compared with that in hollow relativistic backward wave oscillator.
参考文献

[1] Swegle J A, Buford J N. High-power microwaves at 25 years: the current state of development[C]//12th International Conference on High-power Particle Beams. 1998:149-152.

[2] Moreland L, Schamiloglu L, Lemke R W, et al. Efficiency enhancement of high power vacuum BWO’s using nonuniform slow wave structures[J]. IEEE Trans on Plasma Sci, 1994, 22(4):554-565.

[3] Korovin S D, Polevin S D, Roitman A M, et al. Efficiency increase of relativistic BWO[J]. Sov Tech Phys Lett, 1992, 18(5):265-269.

[4] Bugaev S P, Cherepenin V A, Kanavets V I, et al. Relativistic multiwave Cerenkov generator[J]. IEEE Trans on Plasma Sci, 1990, 18(2):525-536.

[5] 刘国治.一种同轴慢波结构相对论高功率微波器件的数值模拟研究[C]//全国第五届高功率微波学术研讨会论文集. 2002:2-6.(Liu Guozhi. Numerical simulation study of a type of coaxial slow wave structure relativistic HPM device//Proceedings of National 5th HPM Academic Conference. 2002:2-6)

[6] 肖仁珍, 刘国治, 林郁正, 等.同轴慢波结构相对论高功率微波产生器初步实验研究[J].强激光与粒子束, 2006, 18(5):839-842.(Xiao Renzhen, Liu Guozhi, Lin Yuzhen, et al. Preliminary experimental research on relativistic high power microwave generator with coaxial slow wave structure. High Power Laser and Particle Beams, 2006, 18(5):839-842)

[7] Teng Yan, Xiao Renzhen, Song Zhimin, et al. High-efficiency coaxial relativistic backward wave oscillator[J]. Rev Sci Instrum, 2011, 82:024701.

[8] 肖仁珍, 刘国治, 林郁正, 等. 同轴慢波结构相对论高功率微波产生器理论分析[J]. 强激光与粒子束, 2006, 18(2):241-244.(Xiao Renzhen, Liu Guozhi, Lin Yuzhen, et al. Analytic theory of relativistic high power microwave generator with coaxial slow wave structure. High Power Laser and Particle Beams, 2006, 18(2):241-244)

[9] 滕雁, 唐传祥, 刘国治, 等.慢波结构参数对同轴同轴相对论返波管线性增长率的影响[J]. 强激光与粒子束, 2009, 21(4):507-510. (Teng Yan, Tang Chuanxiang, Liu Guozhi, et al. Effects of the parameters of the slow wave structure on the linear growth rate of the coaxial RBWO. High Power Laser and Particle Beams, 2009, 21(4):507-510)

[10] Liu Guozhi, Xiao Renzhen, Chen Changhua, et al. A Cerenkov generator with coaxial slow wave structure[J]. J Appl Phys, 2008, 103:093303.

[11] Teng Yan, Tang Chuanxiang, Liu Guozhi, et al. Growth rate of the coaxial slow wave structure[C]//10th IEEE International Vacuum Electronics Conference. 2009:226-227.

[12] Xiao Renzhen, Liu Guozhi, Chen Changhua. Comparison research on three types of coaxial slow wave structures[J]. Chinese Physics B, 2008, 17(10):3807-3811.

[13] Swegle J A, Poukey J W, Leifeste G T. Backward wave oscillators with rippled wall resonators: analytic theory and numerical simulation[J]. Phys Fluids, 1985, 28(8):2882-2294.

[14] Teng Yan, Xiao Renzhen, Liu Guozhi, et al. Starting current of coaxial relative backward wave oscillator[J]. Phys Plasmas, 2010, 17:063108.

[15] 肖仁珍.同轴慢波结构相对论切伦柯夫发生器研究[D].北京:清华大学, 2007.(Xiao Renzhen. Research on a relativistic Cerenkov generator with coaxial slow wave structure. Beijing: Tsinghua University, 2007)

[16] Levush B, Antonsen T M, Bromborsky A, et al. Theory of relativistic backward-wave oscillators with end reflections[J]. IEEE Trans on Plasma Sci, 1992, 20(4):263-280.

[17] Botton M, Ron A. Efficiency enhancement of a plasma-filled backward-wave oscillator by self-induced distributed feedback[J]. Phys Rev Lett, 1991, 66(7):2468-2471.

[18] 文光俊, 李家胤, 谢甫珍, 等.相对论返波振荡器的非线性理论[J].电子学报, 2000, 28(6):93-97.(Wen Guangjun, Li Jiayin, Xie Fuzhen, et al. Nonlinear theory of relativistic backward wave oscillator. Acta Electronica Sinica, 2000, 28(6):93-97)

[19] 李庆扬, 关治, 白峰杉.数值计算原理[M].北京:清华大学出版社, 2000.(Li Qingyang, Guan Zhi, Bai Fengshan. Principles of numerical computations. Beijing: Tsinghua University Press, 2000)

[20] Teng Yan, Liu Guozhi, Shao Hao, et al. A new reflector designed for efficiency enhancement of CRBWO[J]. IEEE Trans on Plasma Sci, 2009, 37(3):1062-1068.

[21] Xiao Renzhen, Zhang Lijun, Liang Tiezhu, et al. Limitation of cross-excitation instability in a relativistic Cerenkov generator with coaxial slow wave structure[J]. Phys Plasmas, 2008, 15:053107.

[22] El’chaninov A S, Zagulov F Y, Kovalev N F, et al. Highly efficient relativistic backward wave tube[J]. Sov Tech Phys Lett, 1980, 6(6):191-198.

滕雁, 肖仁珍, 宋志敏, 孙钧, 陈昌华, 邵浩, 刘国治. 同轴相对论返波管中波束作用过程[J]. 强激光与粒子束, 2012, 24(1): 175. Teng Yan, Xiao Renzhen, Song Zhimin, Sun Jun, Chen Changhua, Shao Hao, Liu Guozhi. Wave-beam interaction in coaxial relativistic backward wave oscillator[J]. High Power Laser and Particle Beams, 2012, 24(1): 175.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!