作者单位
摘要
西北核技术研究院强电磁物理研究所, 陕西 西安 710024
目前大规模地基固态相控阵由于成本原因, 普遍采用大单元间距以减少通道数。在这种间距下, 可视空间会出现栅瓣效应, 天线性能恶化, 雷达扫描范围受限。对阵面设计方法进行研究, 提出一种不等间距阵面优化方法。仿真结果表明, 在 λ×λ单元口径下, 实现 ±20°的扫描角度内栅瓣低于 -20 dB; 由于阵面口径增大, 阵面方向性增强, 单元数减少 18%。
阵列天线 不等间距 二维非周期阵 遗传算法 array antenna unequal spacing 2D aperiodic array genetic algorithm 
太赫兹科学与电子信息学报
2019, 17(4): 671
作者单位
摘要
1 清华大学 工程物理系, 北京 100084
2 西北核技术研究所, 高功率微波技术重点实验室, 西安 710024
近零介电常数材料常用于口面加载以修正天线波前相位,提高口径效率。在对以往金属线阵周期结构研究基础上,提出了介质镀膜板周期结构的近零介电常数材料,并基于NRW本构参数法计算得到了该材料的等效介电常数,依据口面相位差平方和最小原则研制了中空形式的介质镀膜中空板加载结构。实验结果表明,X波段角锥天线加载后其主轴增益最大提高了1.8 dB,口径效率从原有0.4提高至0.6以上,相对工作带宽大于10%。
超材料 近零介电常数 周期结构 介质镀膜板 天线加载 metamaterial epsilon-near-zero periodic structure dielectric coating metallic grid antenna loaded 
强激光与粒子束
2017, 29(2): 023001
作者单位
摘要
1 西北核技术研究所, 高功率微波技术重点实验室, 西安 710024
2 西安电子科技大学 天线与微波技术国家重点实验室, 西安 710071
提出了一种多路波导并联结构,用于实现高功率移相器。目前的铁氧体移相器,为实现高功率容量,通常采用双铁氧体磁环结构。仿真分析了各尺寸参数对双环移相器传播模式、相移效率及功率容量的影响,并进行优化设计,使移相器功率容量达到百kW量级。基于双环形式,采用一种多路波导并联结构,使其功率容量达到MW量级。经匹配设计后,移相器在9.25~9.8 GHz频率范围内,驻波比小于1.4,饱和差相移在390°左右,可实现X波段MW级高功率360°电控移相。
移相器 铁氧体 高功率容量 高次模 临界磁场强度 phase shifter ferrite high power capacity higher order mode critical magnetic field 
强激光与粒子束
2016, 28(8): 28083006
作者单位
摘要
西北核技术研究所, 高功率微波技术重点实验室, 西安 710024
理论分析了收集极中运动电子的失能机制和电子能量对电子束能量沉积的影响,用蒙特卡罗方法计算了不同能量下入射电子的能量沉积分布,分析了电子能量对电子束在收集极中能量沉积的影响,并据此提出了提高收集极耐电子束轰击能力的两种途径。结果表明:激发和电离是收集极中入射电子的主要失能机制;电子的能量越高,在材料中的穿透能力越强,收集极中被收集电子束的最大能量沉积密度越低。综合考虑束流密度分布对能量沉积的影响,可通过两种途径来提高收集极耐电子束轰击的能力:一是通过结构设计增大电子束的收集面积,减小收集极上被收集电子束的束流密度;二是设计高阻抗器件,增大被收集电子束的电子能量,减小收集极上被收集电子束的束流密度。
电子束收集极 能量沉积 电子能量 影响 蒙特卡罗 性能优化 electron collector energy deposition kinetic energy influence Monte Carlo optimization 
强激光与粒子束
2016, 28(3): 033025
作者单位
摘要
西北核技术研究所, 高功率微波技术重点实验室, 西安 710024
相对论返波管(RBWO)高频结构表面微凸起结构导致的表面场致电子发射会加速或加剧射频击穿过程,引起RBWO功率容量下降。为提高现有RBWO的功率容量,给出了RBWO高频结构表面场增强的抑制方法,对一种X波段RBWO表面进行了精密工艺处理后,将表面粗糙度降低至未经表面精密处理时的1/40以下,有效降低了高频结构表面场增强因子,减小了结构表面场致发射电子的能力。进一步开展的高功率微波实验研究表明,抑制表面场增强后X波段RBWO的功率容量提高了25%。
相对论返波管 表面场增强 射频击穿 功率容量 RBWO surface field enhancement factor RF breakdown power capacity 
强激光与粒子束
2016, 28(3): 033019
作者单位
摘要
1 清华大学 工程物理系, 北京 100084
2 西北核技术研究所 高功率微波国防科技重点实验室, 西安 710024
针对多台高功率微波源组阵进行功率合成时相位离散分布的问题,基于数理统计方法对合成阵元相位误差呈正态分布情况下阵列合成效率进行了理论分析,提出了相位误差有界分布下其概率密度函数的表达式,修正了相位分布标准差较大时微波功率合成效率的理论计算公式.为验证修正后的理论公式正确性,使用数值模拟方法计算了合成阵列天线阵元激励信号相位误差呈正态分布下的空间功率合成效率,计算结果表明,数值模拟结果与理论分析给出的计算结果吻合得较好,修正后空间功率合成效率公式的预估精度得到有效提高.
高功率微波 功率合成 合成效率 随机相位 high power microwave power combination combination efficiency random phase 
强激光与粒子束
2015, 27(8): 083002
作者单位
摘要
西北核技术研究所, 高功率微波技术重点实验室, 西安 710024
给出了一种基于梯形慢波结构的相对论返波管结构,并采用2.5维全电磁PIC粒子模拟软件对其前端注入锁相进行了模拟研究。注入功率从二极管区注入相对论返波管中,注入功率50 kW,注入比-48.3dB时,返波管输出的相位抖动在±20°范围内,并拟合了返波管相位抖动与注入功率之间关系,给出了判断返波管相位抖动大小的经验公式。注入功率提高至120MW,注入比-14.5dB时,注入信号对相对论返波管输出的频率实现了牵引。
相对论返波管 注入式锁相 相位牵引 频率牵引 relativistic backward wave oscillator injection phase locking phase control frequency locking 
强激光与粒子束
2014, 26(6): 063037
作者单位
摘要
1 电子物理与器件教育部重点实验室(西安交通大学), 西安 710049
2 西北核技术研究所, 西安 710024
提出一种高效率预调制型同轴虚阴极振荡器,进行了数值模拟研究。研究表明:径向束流预调制型同轴虚阴极振荡器利用在束-波互作用区加载金属圆环形成谐振腔,改变束-波互作用区的电场,对电子束进行调制。圆筒形金属形成的调制腔产生的电场既对电子束进行了调制,同时对微波频率进行了锁定,其谐振频率主要是由加载的金属圆筒的长度和两个圆筒之间的径向距离决定。经过优化设计,在600 kV,73 kA无外加引导磁场的条件下,预调制型同轴虚阴极振荡器获得了平均功率6 GW,频率为2.575 GHz的微波输出,效率达到13.94%。
高功率微波 同轴虚阴极振荡器 谐振腔 预调制 粒子模拟 high power microwave coaxial vircator resonant cavity premodulation PIC simulation 
强激光与粒子束
2014, 26(6): 063036
作者单位
摘要
西北核技术研究所, 西安 710024
理论分析了引导磁场对收集极材料中电子运动的约束作用,推导了引导磁场作用下二次电子的逃逸条件,利用蒙特卡罗方法计算了引导磁场作用下电子束在收集极中的能量沉积规律。研究结果表明:引导磁场对电子在材料内部的运动约束作用很弱,对二次电子有强约束作用;大部分二次电子经拉莫回旋再次轰击在收集极上被收集,逃逸的二次电子沿引导磁场方向进入束波作用区;增大电子的入射角度时,束流密度的降低和二次电子的再次入射降低了收集极中电子的最大沉积能量密度,提高了收集极的耐电子轰击能力。
相对论返波管 电子束收集极 引导磁场 能量沉积 relativistic backward-wave oscillator electron collector guiding magnetic field energy deposition 
强激光与粒子束
2014, 26(6): 063010
作者单位
摘要
西北核技术研究所, 西安 710024
在数值模拟的基础上,设计了一种用于高功率微波合成的X波段同频带双色板。微波斜45°入射时,该双色板在9 GHz到9.3 GHz内反射效率大于99%,在9.7 GHz到10 GHz内传输效率大于99%,可以用于实现两路高功率微波的同极化合成。利用电磁场全波分析软件,建立了双色板数值模型,分析了该双色板的场增强因子和功率容量问题。
高功率微波 双色板 功率容量 传输效率 high power microwave dichroic plate power handling capacity transmission efficiency 
强激光与粒子束
2014, 26(6): 063006

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!