作者单位
摘要
湘潭大学 自动化与电子信息学院,湖南 湘潭 411105
在微波输能窗次级电子倍增效应的模拟研究中,往往忽视低能电子的作用。基于Monte Carlo算法,模拟输能窗次级电子倍增规律,研究了经典的Vaughan模型、Vincent模型和Rice模型三种二次电子发射模型下次级电子倍增效应的差异,通过拟合倍增敏感曲线,获得了低能电子对切向和法向电场作用下输能窗次级电子倍增效应的影响。模拟结果表明,当切向电场作用时,三个发射模型得到的敏感曲线几乎重合,低能电子对敏感曲线的影响甚微,其中Rice模型的敏感区域最大。当法向电场作用时,由Vincent模型拟合得到的敏感区域远大于其他两个模型。
输能窗 速调管 低能电子 次级电子倍增效应 射频击穿 dielectric window klystron low energy electron multipactor RF breakdown 
强激光与粒子束
2020, 32(10): 103008
作者单位
摘要
国防科技大学 前沿交叉学科学院 高功率微波技术研究所, 长沙 410073
金属高频结构的射频击穿是引起功率下降和脉冲缩短的重要原因,是限制高功率微波(HPM)向更高功率、更长脉冲发展的重要因素。射频击穿的物理过程极其复杂,并且开展射频击穿研究对实验条件等要求高,因此粒子模拟是研究射频击穿的重要手段。通过在慢波结构表面设置爆炸发射电子和离子的方式模拟等离子体对一个X波段的相对论返波振荡器(RBWO)和一个Ka波段的RBWO工作的影响。粒子模拟结果表明,对于分段式慢波结构,后段慢波结构产生等离子体会对电子束的调制造成影响,进而影响器件正常工作,引起微波功率下降。当等离子体由质量较轻的正离子和电子组成时,会对束波作用造成更大的影响,引起较大的输出功率下降。相同密度的射频击穿等离子体对Ka波段RBWO工作的影响大于对X波段RBWO的影响。
高功率微波 相对论返波管 射频击穿 粒子模拟 high power microwave RBWO RF breakdown PIC simulation 
强激光与粒子束
2018, 30(4): 043002
作者单位
摘要
西北核技术研究所, 高功率微波技术重点实验室, 西安 710024
相对论返波管(RBWO)高频结构表面微凸起结构导致的表面场致电子发射会加速或加剧射频击穿过程,引起RBWO功率容量下降。为提高现有RBWO的功率容量,给出了RBWO高频结构表面场增强的抑制方法,对一种X波段RBWO表面进行了精密工艺处理后,将表面粗糙度降低至未经表面精密处理时的1/40以下,有效降低了高频结构表面场增强因子,减小了结构表面场致发射电子的能力。进一步开展的高功率微波实验研究表明,抑制表面场增强后X波段RBWO的功率容量提高了25%。
相对论返波管 表面场增强 射频击穿 功率容量 RBWO surface field enhancement factor RF breakdown power capacity 
强激光与粒子束
2016, 28(3): 033019
作者单位
摘要
西北核技术研究所, 西安 710024
对相对论返波管实验中射频击穿现象进行了分析和数值模拟研究,发现谐振反射器和慢波结构的局部场增强诱导了场致电子发射,引起了金属表面的射频击穿,通过研究分析,提出采用分布反馈式谐振反射器,并采用梯形倒角非均匀慢波结构替换正弦慢波结构的方法来抑制射频击穿。数值模拟研究表明,在微波功率2 GW时,改进后的反射器最大场强由1.4 MV/cm降低为570 kV/cm,慢波结构表面最大电场由1.1 MV/cm降低到780 kV/cm。改进后的结构在二极管电压765 kV时获得了微波功率2.2 GW、脉宽45 ns的实验结果,微波功率和脉宽得到显著提升。
相对论返波管 射频击穿 功率容量 谐振反射器 慢波结构 relativistic backward wave oscillator RF breakdown power capability resonant reflector slow wave structure 
强激光与粒子束
2011, 23(11): 3069

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!