中国激光, 2014, 41 (9): 0903001, 网络出版: 2014-08-15  

激光冲击对K403镍基合金高温疲劳性能和断口形貌的影响

Effects of Laser Shock Processing on High Temperature Fatigue Properties and Fracture Morphologies of K403 Nickel-Based Alloy
作者单位
1 空军工程大学等离子体重点实验室, 陕西 西安 710038
2 中国人民解放军95321部队, 湖北 武汉 430222
摘要
对K403镍基合金涡轮叶片进行激光冲击强化(LSP),利用高温高低周复合疲劳试验验证其强化效果。试验结果表明:冲击后裂纹源区附近平坦区较冲击前变大,在快速扩展(FCG)区,激光冲击强化后疲劳条纹间距减小,有大量二次裂纹产生。且强化后在材料表层会引发晶粒细化以及高残余压应力,但在550 ℃/150 min保温下,残余应力部分发生松弛,但是表层细化结构有很好的热稳定性。相比冲击前样件,激光冲击强化后涡轮叶片疲劳寿命提高了140%。热松弛后的残余压应力和表面晶粒细化是镍基合金疲劳寿命提高的主要原因。
Abstract
Laser shock processing (LSP) is carried out on K403 nickel-based alloy turbine blades and the high temperature high and low cycle complexed fatigue tests are conducted to verify the reinforcement effect. The results of the fatigue experiments show that a greater flatness area near the fatigue crack initiation (FCI) is induced by LSP, the fatigue striation spacing on the fatigue crack growth (FCG) area decreases and lots of second cracks are generated after LSP. Grain refinement and high residual compressive stress on the surface layer are induced by LSP. But when the K403 nickel-based alloy after LSP is subjected to heat treatment at 550 ℃ for 150 min, a part of residual compressive stress has got relaxation while the refined structure has still remained good thermal stability. Compared with the untreated samples, the fatigue life of turbine blades is increased by 140% after LSP. The grain refined structure and residual compressive stress after relaxation are the main causes of improvement of nickel-based alloy fatigue life.
参考文献

[1] B A Cowles. High cycle fatigue in aircraft gas turbines-an industry perspective[J]. International Journal of Fractrue. 1989, 80(2-3): 147-163.

[2] R Fabbro, P Peyre, L Berthe, et al.. Physics and applications of laser-shock processing[J]. Journal of Laser Applications, 1998, 10(6): 265-79.

[3] 李伟, 李应红, 何卫锋, 等. 激光冲击强化技术的发展和应用[J]. 激光与光电子学进展, 2008, 45(12): 15-19.

    Li Wei, Li Yinghong, He Weifeng, et al.. Development and application of laser shock processing[J]. Laser & Optoelectronics Progress, 2008, 45(12): 15-19.

[4] 李玉琴, 何卫锋, 李应红, 等. 1Cr11Ni2W2MoV钢激光冲击强化后渗铝工艺研究[J]. 中国激光, 2011, 38(7): 0703005.

    Li Yuqin, He Weifeng, Li Yinghong, et al.. Effects on technology of aluminizing after laser shock processing in 1Cr11Ni2W2MoV steel[J]. Chinese J Lasers, 2011, 38(7): 0703005.

[5] 李玉琴, 李应红, 何卫锋, 等. 激光冲击渗碳12CrNi3A钢的磨损性能[J]. 中国激光, 2013, 40(9): 0903004.

    Li Yuqin, Li Yinghong, He Weifeng, et al.. Wear resistance of 12CrNi3A steel after carburization and laser shock[J]. Chinese J Lasers, 2013, 40(9): 0903004.

[6] R Fabbro, J Foumier, P Ballard, et al.. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2): 775-784.

[7] J Z Zhou, S Huang, J Sheng, et al.. Effect of repeated impacts on mechanical properties and fatigue fracture morphologies of 6061-T6 aluminum subject to laser peening[J]. Mater Sci Eng A, 2012, 539(1): 360-368.

[8] M Dorman, M B Toparli, N Smyth, et al.. Effect of laser shock peening on residual stress and fatigue life of clad 2024 aluminium sheet containing scribe defects[J]. Mater Sci Eng A, 2012, 548(4): 142-151.

[9] O Hatamleh, A DeWald. An investigation of the peening effects on the residual stresses in friction stir welded 2195 and 7075 aluminum alloy joints[J]. Journal of Materials Processing Technology, 2009, 209(10): 4822-4829.

[10] H Luong, M R Hill. The effects of laser peening on high-cycle fatigue in 7085-T7651 aluminum alloy[J]. Mater Sci Eng A, 2008, 477(1): 208-216.

[11] L Zhou, Y Li, W He, et al.. Deforming TC6 titanium alloys at ultrahigh strain rates during multiple laser shock peening[J]. Mater Sci Eng A, 2013, 578(4): 181-186.

[12] X Nie, W He, L Zhou, et al.. Experiment investigation of laser shock peening on TC6 titanium alloy to improve high cycle fatigue performance[J]. Mater Sci Eng A, 2014, 594(11): 161-167.

[13] 曹子文, 邹世坤, 刘方军, 等. 激光冲击处理1Cr11Ni2W2MoV不锈钢[J]. 中国激光, 2008, 35(2): 316-320.

    Cao Ziwen, Zou Shikun, Liu Fangjun, et al.. Laser shock processing on 1Cr11Ni2W2MoV martensite steel[J]. Chinese J Laser, 2008, 35(2): 316-320.

[14] Y Li, L Zhou, W He, et al.. The strengthening mechanism of a nickel-based alloy after laser shock processing at high temperatures[J]. Sci Tech Adv Mater, 2013, 14(5): 055010.

[15] 《中国航空材料手册》编委会. 中国航空材料手册[M]. 北京: 中国标准出版社, 2001.

    “China Aeronautical Materials Handbook” Editorial Board. China Aeronautical Materials Handbook[M]. Beijing: China Standards Press of China, 2001.

[16] J M Yang, Y C Her, N Han, et al.. Laser shock peening on fatigue behavior of 2024-T3 Al alloy with fastener holes and stopholes[J]. Mater Sci Eng A, 2001, 298(1): 296-299.

[17] 李伟, 何卫锋, 李应红, 等. 激光冲击强化对K417材料振动疲劳性能的影响[J]. 中国激光, 2009, 36(8): 2197-2201.

    Li Wei, He Weifeng, Li Yinghong, et al.. Effect of laser shock processing on vibration fatigue properties of K417 material[J]. Chinese J Lasers, 2009, 36(8): 2197-2201.

[18] N Tao, W Tong, Z Wang, et al.. Mechanical and wear properties of nanostructured surface layer in iron induced by surface mechanical attrition treatment[J]. J Mater Sci Tech, 2003, 19(6): 563-568.

罗思海, 何卫锋, 周留成, 赖志林, 柴艳, 何光宇. 激光冲击对K403镍基合金高温疲劳性能和断口形貌的影响[J]. 中国激光, 2014, 41(9): 0903001. Luo Sihai, He Weifeng, Zhou Liucheng, Lai Zhilin, Chai Yan, He Guangyu. Effects of Laser Shock Processing on High Temperature Fatigue Properties and Fracture Morphologies of K403 Nickel-Based Alloy[J]. Chinese Journal of Lasers, 2014, 41(9): 0903001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!