作者单位
摘要
1 空军工程大学航空工程学院等离子体动力学重点实验室, 陕西 西安 710043
2 陕西省泾阳县医院骨科, 陕西 咸阳 713700
针对医用植入体材料锆基金属玻璃在应用中存在的生物兼容性问题,采用纳秒激光在金属玻璃试样表面诱导产生点阵和沟槽两种微纳结构,然后采用细胞活性测试、细胞分布和形态观察评价两种微纳结构对锆基金属玻璃生物兼容性的改善效果,并从表面形貌方面讨论激光表面改性对生物兼容性的改善机理。结果表明:相对于原始试样,激光诱导产生的沟槽结构能够显著增强成骨细胞在试样表面的黏附性和细胞活性,这主要归功于显著增加的表面粗糙度;点阵结构对细胞活性的改善效果不理想。除此之外,在沟槽试样表面,激光诱导产生的沟槽以及在沟槽内附着的微纳结构是成骨细胞在沟槽内部或附近沿着沟槽方向分布的主要原因。
激光技术 锆基金属玻璃 生物兼容性 纳秒激光 表面粗糙度 
中国激光
2020, 47(11): 1102007
作者单位
摘要
1 空军工程大学等离子体重点实验室, 陕西 西安 710038
2 中国人民解放军94106部队, 陕西 西安 710038
激光冲击强化利用激光冲击波力学效应可提高金属材料力学性能,现有实验手段难以测量波后动态物理参量、局部动态力学量以及微观组织动态运动过程。采用分子动力学方法,在300 K初始温度下对纯钛进行冲击模拟,观察到冲击加载下冲击波在纯钛中传播的动态双波结构,得到了加载过程中的力学量动态变化以及力学作用下孪晶的动态生长过程。塑性变形过程中,由于位错的塞积和释放,正应力上升的同时剪切力和流变应力不断下降,形成平行孪晶栅。在受冲击表面观察到了极薄的非晶层,其形成与超高应变率塑性变形和动态再结晶相关,且孪晶和非晶层结构均与透射电子显微镜结果吻合较好。
激光光学 塑性变形 分子动力学 冲击 纯钛 
中国激光
2016, 43(8): 0802014
作者单位
摘要
空军工程大学等离子体动力学重点实验室, 陕西 西安 710038
针对K24 镍基铸造合金材料表面粗糙度大引起吸收保护层贴合不紧密的问题,提出采用无保护层激光冲击(LSPwC)方法对K24合金进行强化,利用高周疲劳实验验证其强化效果,并从残余应力、微观组织方面讨论疲劳性能改善机理。实验结果表明:相对于原始叶片,LSPwC 后的模拟叶片的疲劳强度提高16%,保温后疲劳强度提高11%。LSPwC 在试样表层诱导产生高幅值残余压应力和高密度位错,从而提高模拟叶片的疲劳性能;保温后,大部分残余压应力发生松弛,位错结构具有较好的热稳定性,这是保温后模拟叶片疲劳性能提高的主要原因。
激光技术 高周疲劳 无保护层激光冲击强化 K24合金 微观组织 残余压应力 
中国激光
2015, 42(10): 1003002
作者单位
摘要
空军工程大学等离子体动力学重点实验室,陕西 西安 710038
采用激光斜入方法对航空发动机扇轴转接圆角部位进行激光冲击强化试验。分析了斜冲击机理及方法,计算优化斜激光冲击强化试验参数,对冲击前后试件的显微硬度、残余应力进行对比分析,并进行旋转了弯曲疲劳对比验证试验。其结果表明,风扇轴经过激光斜冲击强化后,表面显微硬度提高了11%,残余应力不均匀性得到改善,旋转弯曲疲劳寿命提高了160%;断口观察分析可知,激光冲击强化可以使疲劳源位置内移,降低裂纹扩展速率,从而提高试件的疲劳性能。
风扇轴 圆角 激光斜冲击 残余应力 旋转弯曲疲劳试验 fan shaft circular bead oblique laser shock residual stress rotary bending fatigue test 
红外与激光工程
2015, 44(12): 3548
作者单位
摘要
1 空军工程大学 等离子体动力学重点实验室,陕西 西安 710038
2 中国人民解放军94655部队,安徽 芜湖 241007
对渗铝、渗铝后强化、强化后渗铝的K417合金试件分别进行振动疲劳试验。试验结果表明,相对于渗铝处理,强化后渗铝试样的疲劳强度提高了50%,而渗铝后强化试样的疲劳强度提高了30%,这说明渗铝与激光喷丸强化复合工艺可以提高材料的疲劳性能,且强化后渗铝效果更好。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)分析激光喷丸强化与渗铝复合工艺顺序对材料力学性能的影响,讨论了疲劳性能的改善机理。结果表明,激光喷丸强化促进了渗铝过程,生成大量柱状晶,渗层厚度增加,渗层与基体的结合更加紧密,从而有效提升疲劳性能;而渗铝后强化主要对渗层表面进行了形变强化,疲劳性能的提升有限。
复合工艺 激光喷丸强化 渗铝 K417合金 显微硬度 composite technology laser shock peening aluminizing K417 alloy micro-hardness 
红外与激光工程
2015, 44(8): 2274
作者单位
摘要
1 空军工程大学等离子体重点实验室, 陕西 西安 710038
2 中国人民解放军95321部队, 湖北 武汉 430222
对K403镍基合金涡轮叶片进行激光冲击强化(LSP),利用高温高低周复合疲劳试验验证其强化效果。试验结果表明:冲击后裂纹源区附近平坦区较冲击前变大,在快速扩展(FCG)区,激光冲击强化后疲劳条纹间距减小,有大量二次裂纹产生。且强化后在材料表层会引发晶粒细化以及高残余压应力,但在550 ℃/150 min保温下,残余应力部分发生松弛,但是表层细化结构有很好的热稳定性。相比冲击前样件,激光冲击强化后涡轮叶片疲劳寿命提高了140%。热松弛后的残余压应力和表面晶粒细化是镍基合金疲劳寿命提高的主要原因。
激光光学 激光冲击强化 K403镍基合金 高温疲劳 疲劳断口 残余压应力 
中国激光
2014, 41(9): 0903001
作者单位
摘要
空军工程大学等离子体动力学重点实验室, 陕西 西安 710038
高周疲劳是航空发动机部件的主要故障之一。通过对1Cr11Ni2W2MoV不锈钢进行不同次数的激光冲击强化(LSP)处理,研究冲击次数对激光冲击强化材料高周疲劳性能的影响。对不同处理状态的试件进行常温振动疲劳试验,采用X射线衍射(XRD)应力分析仪、扫描电镜(SEM)、金相显微镜等手段研究冲击次数对材料组织和力学性能的影响。试验结果表明,随着LSP冲击次数的增加,1Cr11Ni2W2MoV不锈钢表面粗糙度增大,组织细化层厚度没有变化,残余应力梯度变小,残余压应力层深度增加,1次冲击后,残余压应力层深为1.8 mm,3次冲击后为2.5 mm。表面残余压应力随着冲击次数增加而逐渐趋于饱和,饱和值接近于-100%σ0.2。振动疲劳试验结果表明,疲劳寿命随着LSP次数增加而提高,但提高幅度减小。在σmax=640 MPa应力水平下,1次冲击后试样疲劳寿命是未强化试样的3.8倍,3次冲击后试样疲劳寿命是未强化试样的5倍。经分析,多次冲击时的冲击波叠加效应使得冲击波传播到材料的更深层,从而使材料组织变形层和残余应力影响层更深,高周疲劳寿命提高更大。
激光技术 激光冲击强化 高周疲劳性能 冲击次数 残余应力 
中国激光
2014, 41(1): 0103001
作者单位
摘要
空军工程大学等离子体动力学实验室, 陕西 西安 710038
提出激光冲击处理增强渗碳的组合方法,提高了12CrNi3A钢渗碳层的质量和耐磨性能。采用球磨实验分析了渗碳和激光冲击增强渗碳两种工艺下材料的耐磨性能,采用扫描电镜(SEM)研究了激光冲击增强渗碳对12CrNi3A材料微观组织的影响。结果表明,激光冲击渗碳试样的比磨损率为2.69×10-14 m3/Nm,比渗碳试样降低了29%。从摩擦系数和微观组织两个方面分析讨论了这种工艺方法提高12CrNi3A耐磨性能的机理。一方面,激光冲击增强渗碳使试样的摩擦系数降低了25%;另一方面,激光冲击渗碳试样表层形成了大量细小的碳化物颗粒,并呈梯度分布,从而提高了12CrNi3A钢材料的耐磨性能。
激光技术 激光冲击处理 渗碳层 12CrNi3A钢 耐磨性能 
中国激光
2013, 40(9): 0903004
作者单位
摘要
空军工程大学等离子体动力学重点实验室, 陕西 西安 710038
为了比较激光冲击强化与超声喷丸对1Cr11Ni2W2MoV不锈钢疲劳性能的影响,对未处理、超声喷丸处理和激光冲击强化处理三种状态试件进行常温振动疲劳试验,并通过X射线衍射、扫描电镜和透射电镜等手段分析两种技术提高疲劳寿命的机理。试验结果表明,在选定的工艺参数下,超声喷丸和激光冲击强化处理后,疲劳寿命分别提高了88.2%和280.1%,形成的表面残余应力分别为-545 MPa,-810 MPa,残余压应力深度分别为0.4 mm,1.8 mm,表面硬度由392 HV分别提高到434 HV、405 HV;超声喷丸形成的组织细化层和纳米晶层较深。经分析,激光冲击强化对1Cr11Ni2W2MoV不锈钢常温疲劳性能的提高优于超声喷丸主要与其产生的高残余压应力和低粗糙度影响有关。
激光技术 激光喷丸 超声喷丸 1Cr11Ni2W2MoV不锈钢 疲劳寿命 残余应力 纳米晶层 
激光与光电子学进展
2013, 50(5): 051403
作者单位
摘要
空军工程大学航空等离子动力学实验室, 陕西 西安 710038
为研究激光冲击强化(LSP)过程中激光诱导冲击波的时空分布规律,在对比分析有限元仿真的基础上,探索采用光滑粒子流体动力学(SPH)对激光冲击强化的物理过程进行仿真,并设计了冲击波测试平台,对仿真结果进行了初步试验验证。结果表明,SPH模型演化物理过程明显,计算结果和试验结果相似度高,为激光冲击强化物理仿真提供了一种新的研究思路和方法。
激光技术 激光冲击强化 光滑粒子流体动力学 数值仿真 
中国激光
2011, 38(8): 0803003

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!