Photonic Sensors, 2018, 8 (3): 03213, Published Online: Aug. 4, 2018   

Strong Influence of Temperature and Vacuum on the Photoluminescence of In0.3Ga0.7As Buried and Surface Quantum Dots

Author Affiliations
1 School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
2 School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454000, China
Copy Citation Text

Guodong WANG, Huiqiang JI, Junling SHEN, Yonghao XU, Xiaolian LIU, Ziyi FU. Strong Influence of Temperature and Vacuum on the Photoluminescence of In0.3Ga0.7As Buried and Surface Quantum Dots[J]. Photonic Sensors, 2018, 8(3): 03213.

References

[1] A. W. Walker, S. Hechelmann, C. Karcher, O. Hohn, C. Went, M. Niemeyer, et al., “Nonradiative lifetime extraction using power-dependent relative photoluminescence of III-V semiconductor double-heterostructures,” Journal of Applied Physics, 2016, 119(15): 155702-1-155702-10.

[2] H. Saito, K. Nishi, and S. Sugou, “Influence of GaAs capping on the optical properties of InGaAs/GaAs surface quantum dots with 1.5 μm emission,” Applied Physics Letters, 1998, 73(19): 2742-2744.

[3] G. D. Wang, B. L. Liang, B. C. Juang, A. Das, M. C. Debnath, D. L. Huffaker, et al., “Comparative study of photoluminescence from In0.3Ga0.7As/GaAs surface and buried quantum dots,” Nanotechnology, 2016, 27(46): 465701-1-465701-6.

[4] D. Chettri, T. J. Singh, and K. J. Singh, “InAs/GaAs quantum dot solar cell,” International Journal of Electronics, Electrical and Computational System, 2017, 6(3): 221-224.

[5] A. D. Utrilla, D. F. Reyes, J. M. Llorens, I. Artacho, T. Ben, D. Gonzalez, et al., “Thin GaAsSb capping layers for improved performance of InAs/GaAs quantum dot solar cells,” Solar Energy Materials & Solar Cells, 2017, 159: 282-289.

[6] K. Sablon, J. Little, N. Vagidov, Y. Li, V. Mitin, and A. Sergeev, “Conversion of above- and below bandgap photons via InAs quantum dot media embedded into GaAs solar cell,” Applied Physics Letters, 2014, 104(25): 253904-1-253904-5.

[7] B. Shi, S. Zhu, Q. Li, Y. T. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photonics, 2017, 4: 204-210.

[8] F. Gao, S. Luo, H. M. Ji, X. G. Yang, and T. Yang, “Enhanced performance of tunable external-cavity 1.5 μm InAs/InP quantum dots lasers using facet coating,” Applied Optics, 2015, 54(3): 472-476.

[9] A. Zeghuzi, H. Schmeckebier, M. Stubenrauch, C. Meuer, C. Schubert, C. A. Bunge, et al., “25 Gbits differential phase-shift-keying signal generation using directly modulated quantum dot semiconductor optical amplifiers,” Applied Physics Letters, 2015, 106: 213501-1-213501-4.

[10] S. M. Chen, W. Li, Z. Y. Zhang, D. Childs, K. J. Zhou, J. Orchard, et al., “GaAs-based superluminescent light emitting diodes with 290 nm emission bandwidth by using hybrid quantum well/quantum dot structures,” Nanoscale Research Letters, 2015, 10(1): 1-8.

[11] R. D. Angelis, M. Casalboni, F. D. Matteis, F. Hatami, W. T. Masselink, H. Zhang, et al., “Chemical sensitivity of InP/In0.48Ga0.52P surface quantum dots studied by time-resolved photoluminescence spectroscopy,” Journal of Luminescence, 2015, 168: 54-58.

[12] M. J. Milla, J. M. Ulloa, and A. Guzman, “Strong Influence of the humidity on the electrical properties of InGaAs surface quantum dots,” ACS Applied Materials & Interfaces, 2014, 6(9): 6191-6195.

[13] R. D. Angelis, L. D. Amico, M. Casalboni, F. Hatami, W. T. Masselink, and P. Prosposito, “Photoluminescence sensitivity to methanol vapours of surface InP quantum dots: effect of dot size and coverage,” Sensors & Actuators B: Chemical, 2013, 189(2): 113-117.

[14] B. L. Liang, Z. M. Wang, Y. I. Mazur, S. Seydmohamadi, M. E. Ware, and G. J. Salamo, “Tuning the optical performance of surface quantum dots in InGaAs/GaAs hybrid structures,” Optics Express, 2007, 15(3): 8157-8162.

[15] Z. X. Zhao, R. B. Laghumavarapu, P. J. Simmonds, H. M. Ji, B. A. Liang, and D. L. Huffaker, “Photoluminescence study of the effect of strain compensation on InAs/AlAsSb quantum dots,” Journal of Crystal Growth, 2015, 425: 321-315.

[16] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” Journal of Applied Physics, 2001, 89(11): 5815-5875.

[17] D. I. Lubyshev, P. P. Gonzalez-Borrero, E. Marega, E. Petitprez, N. L. Scala, and P. Basmaji, “Exciton localization and temperature stability in self-organized InAs quantum dots,” Applied Physics Letters, 1996, 68(2): 205-207.

[18] Z. Y. Xu, Z. D. Lu, Z. L. Yuan, X. P. Yang, B. Z. Zheng, J. Z. Xu, et al., “Thermal activation and thermal transfer of localized excitons in InAs self-organized quantum dots,” Superlattices and Microstructures, 1998, 23(2): 381-387.

[19] J. Z. Wang, Z. Yang, and C. L. Yang, “Photoluminescence of InAs quantum dots grown on GaAs surface,” Applied Physics Letters, 2000, 77(18): 2837-2839.

[20] M. J. Milla, J. M. Ulloa, and A. Guzman, “Strong influence of the humidity on the electrical properties of InGaAs surface quantum dots,” ACS Applied Materials & Interfaces, 2014, 6(9): 6191-6195.

[21] M. J. Milla, J. M. Ulloa, and A. Guzman, “Photoexcited induced sensitivity of InGaAs surface QDs to environment,” Nanotechnology, 2014, 25(44): 445501-1-445501-6.

[22] R. D. Angelis, M. Casalboni, F. D. Matteis, F. Hatami, W. T. Masselink, H. Zhang, et al., “Chemical sensitivity of InP/In0.48Ga0.52P surface quantum dots studied by time-resolved photoluminescence spectroscopy,” Journal of Luminescence, 2015, 168: 54-58.

Guodong WANG, Huiqiang JI, Junling SHEN, Yonghao XU, Xiaolian LIU, Ziyi FU. Strong Influence of Temperature and Vacuum on the Photoluminescence of In0.3Ga0.7As Buried and Surface Quantum Dots[J]. Photonic Sensors, 2018, 8(3): 03213.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!