光学学报, 2017, 37 (5): 0511004, 网络出版: 2017-05-05   

基于平场光栅的稀疏约束鬼成像高光谱相机

Hyperspectral Camera Based on Ghost Imaging via Sparsity Constraints with Application of Flat-Field Grating
作者单位
1 中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
2 中国科学院大学, 北京 100049
摘要
基于稀疏约束的鬼成像光谱相机, 能够通过单次曝光获得目标场景的三维空间光谱数据立方体。但是由于不同波长的散斑场在探测器的同一位置处, 使得仪器的光谱分辨率和信噪比受到限制。为了解决上述问题, 提出了利用平场光栅分光将不同波长的光场在探测面上错开一定距离的系统, 实现了基于平场光栅的稀疏约束鬼成像高光谱相机。通过对系统成像过程的理论推导, 得到了系统的关联函数, 并通过实验和数值模拟验证了理论推导结果。在保证原先光谱相机优点的同时, 基于稀疏约束的鬼成像高光谱相机可以分别调控光谱分辨率和空间分辨率, 实现可控的信噪比。此外, 还能够根据不同波长的光场特性来优化测量矩阵, 从而提高图像恢复质量。
Abstract
A spectral camera based on the ghost imaging via sparsity constrains acquires a three-dimensional spatial-spectral data cube of information about a target in a single exposure. However, the spectral resolution and signal-to-noise ratio are limited, since the speckle field with different wavelengths are at the same location in the detector. To deal with these issues, a system which utilizes a flat-field grating to disperse the optical fields with different wavelengths in the detector to realize hyperspectral camera based on the ghost imaging via sparsity constraints is demonstrated. Through theoretical derivation of the imaging process, the correlation function of the system is obtained, and the derived result is verified by the experiments and numerical simulations. Under guaranteeing the advantages of previous ghost imaging spectral camera spectral camera, the proposed system can modulate the spatial and spectral resolution separately, meanwhile, the signal-to-noise ratio becomes controllable. Additionally, the measurement matrix will be better optimized according to the characteristics of optical fields with different wavelengths to improve the quality of imaging in the future.
参考文献

[1] Green R O, Eastwood M L, Sarture C M, et al. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (aviris)[J]. Remote Sensing of Environment, 1998, 65(3): 227-248.

[2] Morris H R, Hoyt C C, Treado P J. Imaging spectrometers for fluorescence and raman microscopy: Acousto-optic and liquid crystal tunable filters[J]. Applied Spectroscopy, 1994, 48(7): 857-866.

[3] 陆明海, 沈 夏, 韩申生. 基于数字微镜器件的压缩感知关联成像研究[J]. 光学学报, 2011, 31(7): 0711002.

    Lu Minghai, Shen Xia, Han Shensheng. Ghost imaging via compressive sampling based on digital micromirror device[J]. Acta Optica Sinica, 2011, 31(7): 0711002.

[4] Wagadarikar A A, Pitsianis N P, Brady D J, et al. Spectral image estimation for coded aperture snapshot spectral imagers[C]. SPIE, 2008, 7076: 707602.

[5] Liu Z T, Tan S Y, Wu J R, et al. Spectral camera based on ghost imaging via sparsity constraints[J]. Scientific Reports, 2016, 6: 25718.

[6] Cheng J, Han S. Incoherent coincidence imaging and its applicability in X-ray diffraction[J]. Physical Review Letters, 2004, 92(9): 093903.

[7] Gatti A, Brambilla E, Bache M, et al. Ghost imaging with thermal light: Comparing entanglement and classical correlation[J]. Physical Review Letters, 2004, 93(9): 093602.

[8] Welsh S S, Edgar M P, Bowman R, et al. Fast full-color computational imaging with single-pixel detectors[J]. Optics Express, 2013, 21(20): 23068-23074.

[9] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Physical Review A, 2009, 79(5): 1744-1747.

[10] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 2008, 78(6): 061802.

[11] Jacobs E W, Fisher Y, Boss R D. Image compression: A study of the iterated transform method[J]. Signal Processing, 1992, 29(3): 251-263.

[12] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.

[13] Candès E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.

[14] Eldar Y C, Kutyniok G. Compressed sensing: Theory and applications[M]. Cambridge: Cambridge University Press, 2012: 53-56.

[15] Stern A, Rivenson Y, Javidi B. Single-shot compressive imaging[C]. SPIE, 2007, 6778:67780J.

[16] Fergus R, Torralba A, Freeman W T. Random lens imaging[R]. MIT CSAIL Technical Report, 2006.

[17] Giglio M, Carpineti M, Vailati A. Space intensity correlations in the near field of the scattered light: A direct measurement of the density correlation function g(r)[J]. Physical Review Letters, 2000, 85(7): 1416.

[18] Cerbino R, Peverini L, Potenza M A C, et al. X-ray-scattering information obtained from near-field speckle[J]. Nature Physics, 2008, 4(3): 238-243.

[19] Wu J, Yang J M, Ding Y K, et al. Flat field grating spectrograph for soft X-ray laser research[J]. High Power Laser & Particle Beams, 2002, 14(4): 489-492.

[20] Kulakova N K, Mirumyants S O, Bugaenko A G. Characteristics of a concave diffraction grating on which a spherical wave is incident[J]. Journal of Optical Technology, 2006, 73(10): 682-686.

[21] Hayat G S, Flamand J, Lacroix M, et al. Designing a new generation of analytical instruments around the new types of holographic diffraction grating[J]. Optical Engineering, 1975, 14(5): 420-425.

[22] 谭诗语, 刘震涛, 李恩荣, 等. 基于先验图像约束的多光谱压缩感知[J]. 光学学报, 2015, 35(8): 0811003.

    Tan Shiyu, Liu Zhentao, Li Enrong, et al. Hyperspectral compressed sensing based on prior images constrained[J]. Acta Optica Sinica, 2015, 35(8): 0811003.

[23] Goodman J W. Introduction to fourier optics[M]. New York: Roberts and Company Publishers, 2005: 154-160.

[24] 罗 彪, 温志渝, 温中泉, 等. 面向微小型紫外光谱仪的凹面光栅模拟与设计[J]. 光谱学与光谱分析, 2012, 32(6): 1717-1721.

    Luo Biao, Wen Zhiyu, Wen Zhongquan, et al. Design of concave grating for ultraviolet-spectrum[J]. Spectroscopy and Spectral Analysis, 2012, 32(6): 1717-1721.

[25] 程传福, 亓东平, 刘德丽, 等. 高斯相关随机表面及其光散射散斑场的模拟产生和光强概率分析[J]. 物理学报, 1999, 48(9): 1635-1643.

    Cheng Chuanfu, Qi Dongping, Liu Deli, et al. The computational simulations of the Gaussian correlation random surface and its light-scattering speckle field and the analysis of the intensity probability density[J]. Acta Physica Sinica, 1999, 48(9): 1635-1643.

[26] Palmer C A, Loewen E G. Diffraction grating handbook[M]. Ohio: Newport Corporation, 2005: 67-90.

[27] Lerner J M, Chambers R J, Passereau G. Flat field imaging spectroscopy using aberrati on corrected holographic gratings[C]. Los Angeles Technical Symposium: International Society for Optics and Photonics, 1981, 268(12): 122-128.

[28] Sokolova E. Holographic diffraction gratings for flat-field spectrometers[J]. Journal of Modern Optics, 2000, 47(13): 2377-2389.

[29] 周 倩, 曾理江, 李立峰. 平场全息凹面光栅制作结构与使用结构之间误差补偿作用的数值模拟与实验验证[J]. 光谱学与光谱分析, 2008, 28(7), 1674-1678.

    Zhou Qian, Zeng Lijiang, Li Lifeng. Numerical simulation and experimental demonstration of error compensation between recording structure and use structure of flat-field holographic concave gratings[J]. Spectroscopy and Spectral Analysis, 2008, 28(7): 1674-1678.

[30] 孔 鹏, 唐玉国, 巴音贺希格, 等. 零像散宽波段平场全息凹面光栅的优化设计[J]. 光谱学与光谱分析, 2012, 32(2): 565-569.

    Kong Peng, Tang Yuguo, Bayanheshig, et al. Optimization of broad-band flat-field holographic concave grating without astigmatism[J]. Spectroscopy and Spectral Analysis, 2012, 32(2): 565-569.

[31] 孔 鹏. 平场全息凹面光栅设计方法及制作关键技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2011: 23-63.

    Kong Peng. The research on design methods and key fabricating technologies of flat-field holographic concave grating[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2011: 23-63.

[32] 吴建荣, 沈 夏, 喻 虹, 等. 基于相位调制的单次曝光压缩感知成像[J]. 光学学报, 2014, 34(10): 1011005.

    Wu Jianrong, Shen Xia, Yu Hong, et al. Snapshot compressive imaging by phase modulation[J]. Acta Optica Sinica, 2014, 34(10): 1011005.

[33] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Applied Physics Letters, 2009, 95(13): 131110.

[34] Gong W L, Han S S. Super-resolution ghost imaging via compressive sampling reconstruction[J]. Physics, 2009.

刘盛盈, 刘震涛, 吴建荣, 李恩荣, 谭诗语, 沈夏, 韩申生. 基于平场光栅的稀疏约束鬼成像高光谱相机[J]. 光学学报, 2017, 37(5): 0511004. Liu Shengying, Liu Zhentao, Wu Jianrong, Li Enrong, Tan Shiyu, Shen Xia, Han Shensheng. Hyperspectral Camera Based on Ghost Imaging via Sparsity Constraints with Application of Flat-Field Grating[J]. Acta Optica Sinica, 2017, 37(5): 0511004.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!