红外与激光工程, 2019, 48 (7): 0722002, 网络出版: 2019-08-07   

液晶空间光调制器过驱动方法的FPGA实现

FPGA implementation of the overdriving method of liquid crystal spatial light modulator
郭弘扬 1,2,3,*杜升平 1,2黄永梅 1,2付承毓 1,2
作者单位
1 中国科学院光束控制重点实验室, 四川 成都 610209
2 中国科学院光电技术研究所, 四川 成都 610209
3 中国科学院大学, 北京 100049
摘要
针对空间光调制器系统中, 液晶在正常驱动电压下响应时间长, 拖慢系统响应速度等问题, 对影响液晶响应时间的因素、液晶的弛豫特性以及液晶的过驱动原理进行了分析, 提出了一种基于FPGA(Field-Programmable Gate Array)的液晶过驱动方法。其中, 相位量化、过驱动表查找、PWM(Pulse Width Modulation)产生均由FPGA完成, 该方法不占用CPU(Central Processing Unit)资源, 能够更快速响应CPU指令,在硬件方面进一步节省了液晶响应时间。最后搭建实验光路, 实验结果表明使用该过驱动方法后, 一个调制周期范围内, 在5 V过驱动电压下, 液晶调制相位上升过程响应时间从500 ms缩短至35 ms; 下降过程响应时间从300 ms缩短到36 ms。实现了液晶分子相位的快速偏转, 提高系统的响应速度近一个数量级。
Abstract
In the system of the spatial light modulator, the response time of the liquid crystal under normal driving voltage is long, and the response speed of the system is slowed down. Considering these, the factors affecting the response time of the liquid crystal, the relaxation characteristics of the liquid crystal and the overdrive principle of the liquid crystal were analyzed. An overdriving method of liquid crystal based on the FPGA was put forward. Among them, phase quantization, overdriving look-up table, and PWM generation were all performed by the FPGA. This method did not occupy CPU resources and can respond to CPU instructions more quickly, and further saving LCD response time in terms of hardware. Finally, the experimental optical path was built. The experimental results show that after using the overdriving method, in a modulation period and under 5 V driving voltage, the response time of the liquid crystal modulation phase rise process is shortened from 500 ms to 35 ms, and the fall response time is shortened from 300 ms to 36 ms. The rapid deflection of the phase of the liquid crystal molecules is achieved, and the response speed of the system is improved by an order of magnitude.
参考文献

[1] Wang Yukun, Hu Lifa, Wang Chongchong, et al. Modeling and control of tilting mirror in liquid crystal adaptive optics system[J]. Optics and Precision Engineering, 2016, 24(4): 771-779. (in Chinese)

[2] Cao Zhaoliang, Mu Quanquan, Xu Huanyu, et al. Open-loop liquid crystal adaptive optics system: research progress and results [J]. Infrared and Laser Engineering, 2016, 45(4):0402002. (in Chinese)

[3] Zhang Tianyi, Wang Xiangru, Huang Ziqiang, et al. Application of liquid crystal optical phase control technology in satellite communication multiple access[J]. Infrared and Laser Engineering, 2017, 46(11): 1122004. (in Chinese)

[4] Nakamura H. A model of image display in the optimized overdrive method for motion picture quality improvements in liquid crystal devices[J]. Japanese Journal of Applied Physics, 2001, 40(11): 6435-6440.

[5] Xun X, Cho D J, Cohn R W. Spiking voltages for faster switching of nematic liquid-crystal light modulators[J]. Applied Optics, 2006, 45(13): 3136-43.

[6] Hu H, Hu L, Peng Z, et al. Advanced single-frame overdriving for liquid-crystal spatial light modulators[J]. Optics Letters, 2012, 37(16): 3324-3326.

[7] Love G D, Thalhammer G, Padgett M J, et al. Speeding up liquid crystal SLMs using overdrive with phase change reduction[J]. Optics Express, 2013, 21(2): 1779-97.

[8] Huang Ziqiang. Display Principle of Liquid Crystal[M]. Beijing: National Defence Industry Press, 2008. (in Chinese)

[9] Xu Zhongbao, Wang Shuangying, Liu Wenchao, et al. Multifocal Fresnel lens based on liquid crystal spatial light modulator[J]. Optics and Precision Engineering, 2016, 24(10s): 156-161. (in Chinese)

[10] Ji Honglei, Zhou Qingchao, Pan Jun, et al. Quantum dot liquid crystal display backlight technology[J]. Chinese Optics, 2017, 10(5): 666-680. (in Chinese)

[11] Du Shengping, Fu Chengyu, Huang Yongmei, et al.Measurement method of phase modulation of liquid crystal [J]. Acta Photonica Sinica, 2017, 46(1): 87-94. (in Chinese)

郭弘扬, 杜升平, 黄永梅, 付承毓. 液晶空间光调制器过驱动方法的FPGA实现[J]. 红外与激光工程, 2019, 48(7): 0722002. Guo Hongyang, Du Shengping, Huang Yongmei, Fu Chengyu. FPGA implementation of the overdriving method of liquid crystal spatial light modulator[J]. Infrared and Laser Engineering, 2019, 48(7): 0722002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!