人工晶体学报, 2020, 49 (10): 1917, 网络出版: 2021-01-09  

不同原子堆垛的WC(0001)/TiN(111)涂层界面的结合强度建模与分析

Modeling and Analysis of Binding Strength of WC(0001)/TiN(111) Coating Interfaces for Different Atomic Stacks
作者单位
1 上海应用技术大学,上海 201418
2 上海物理气相沉积(PVD)超硬涂层及装备工程技术研究中心,上海 201418
摘要
WC(0001)与TiN(111)涂层界面的结合强度取决于其界面性质。本文采用第一性原理讨论WC(0001)与TiN(111)界面的结合能、界面能、电子结构和成键情况。结果表明:(1)在所有考虑的终端界面之中,结合能从大到小依次为C-HCP-Ti界面(9.19 J/m2)、W-OT-Ti界面(4.28 J/m2)、W-OT-N界面(2.98 J/m2)。(2)C-HCP-Ti界面存在强共价键,两者结合强度最强。W-OT-Ti界面存在共价键和部分金属键,结合强度次于C-HCP-Ti界面结合强度。对于W-OT-N,其界面结合强度为弱共价键,结合强度相对较弱。(3)在整个ΔμC范围内W-OT-Ti、W-OT-N和C-HCP-Ti三种界面的界面能为负,说明这三种界面具有超高稳定性。
Abstract
The bonding strength of WC(0001)/TiN(111) interface depends on the interface properties. The binding strength, interface energy, electronic structure and bonding of the WC(0001)/TiN(111) interface were investigated by first principles.The results show that: (1) for all interfaces, the order from large to small is C-HCP-Ti(9.19 J/m2), W-OT-Ti( 4.28 J/m2) and W-OT-N( 2.98 J/m2). (2) the interface bonding mode of C-HCP-Ti is strong covalent bond, the binding strength of the two is the strongest. The bonding mode of W-OT-Ti interface are covalent bond and partial ionic bond, which are inferior to that of C-HCP-Ti interface binding strength. For W-OT-N, the interface binding strength is metallic bond, and the binding strength is relatively weak. (3) for these three types of interfaces, the interface energy of W-OT-Ti, W-OT-N and C-HCP-Ti in the whole ΔμC range can be negative, which indicate that these three interfaces have ultra-high stability.
参考文献

[1] Gubanov V A, Ivanovsky A L, Zhukov V P. Electronic structure of refractory carbides and nitrides[M].Cambridge: Cambridge University Press, 1994:18-57.

[2] Acker K V, Vanhoyweghen D, Persoons R, et al. Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings[J]. Wear, 2005, 258: 194-202.

[3] 汪中玮,张卫兵,周华堂.超细硬质合金生产过程中的质量控制[J].粉末冶金技术,2007(4):284-288.

[4] 季 鑫,宓一鸣,周细应.TiN薄膜制备方法、性能及其应用的研究进展[J].热加工工艺,2009,38(4):81-84.

[5] Colombo D A, Echeverría M D, Laino S, et al. Rolling contact fatigue resistance of PVD CrN and TiN coated austempered ductile iron[J]. Wear, 2013, 308(1/2): 35-45.

[6] Li Y F, Gao Y M, Xiao B, et al. Theoretical calculations on the adhesion, stability, electronic structure, and bonding of Fe/WC interface[J]. Applied Surface Science,2011,257(13): 5671-5678.

[7] 申玉芳.TiC基金属陶瓷界面结合的第一性原理研究[D].南宁:广西大学,2012.

[8] Shen Y F, Zou Z Q, Xiao Z Q, et al. Properties and electronic structures of titanium aluminides-alnmina composites from in-situ SHS process[J]. Materials Science and Engineering A, 2011,528(4-5): 2100-2105.

[9] Liu C Y, Jin N, Li Z Q, et al. First-principles calculations on the electronic structure and bonding nature of TaN(111)/TiN(111) interface[J]. Journal of Alloys and Compounds, 2017, 717(15): 326-332.

[10] 孔德方,金 鹏.TiN和TiN/Cr3C2抑制剂对WC-Co硬质合金组织和性能的影响[J].硬质合金,2017,34(4):254-262.

[11] Bull S J, Jones A M. Multilayer coatings for improved performance[J]. Surface and Coatings Technology, 1996, 78(1/3): 173-184.

[12] 付延争. Ti/TiN、TiN/CrN和TiN(NbN)/SiNx纳米多层膜界面第一原理研究[D].长春:吉林大学,2008.

[13] Yang G, Liu Y, Hang Z, et al. Adhesion at cerium doped metal-ceramic α-Fe/WC interface: a first-principles calculation[J].Journal of Rare Earths, 2019(7): 773-780.

[14] Han Y F, Dai Y B,Wang J, et al. First-principles calculations on Al/AlB2 interfaces[J].Applied Surface Ence, 2011, 257(17):7831-7836.

[15] Pojani A, Finocchi F, Noguera C. Polarity on the SrTiO3(111) and (110) surfaces[J]. Surface Science, 1999, 442: 179-198.

[16] Wang X G, Chaka A, Scheffler M. Effect of the environment on α-Al2O3(0001) surface structures[J]. Physical Review Letters, 2000, 84: 3650-3653.

[17] Zhao X B, Zhuo Y G, Liu S, et al. Investigation on WC/TiC interface relationship in wear-resistant coating by first-principles[J]. Surface & Coatings Technology, 2016,305(15): 200-207.

[18] Smith J R, Zhang W. Stoichiometric interfaces of Al and Ag with Al2O3[J]. Acta Materialia, 2000, 48: 4395-440.

徐少丽, 张锁怀, 候逸群, 祝梦洁. 不同原子堆垛的WC(0001)/TiN(111)涂层界面的结合强度建模与分析[J]. 人工晶体学报, 2020, 49(10): 1917. XU Shaoli, ZHANG Suohuai, HOU Yiqun, ZHU Mengjie. Modeling and Analysis of Binding Strength of WC(0001)/TiN(111) Coating Interfaces for Different Atomic Stacks[J]. Journal of Synthetic Crystals, 2020, 49(10): 1917.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!