激光生物学报, 2015, 24 (4): 303, 网络出版: 2015-11-30  

基于纳米金光学性质的分子检测与应用

Gold Nanoparticles:Optical Properties and Implementations in Molecular Detection
作者单位
西安交通大学生命科学与技术学院生物医学信息工程教育部重点实验室, 陕西 西安710049
摘要
纳米金颗粒是近年研究最为广泛的纳米材料之一,它具有良好的生物相容性、化学稳定性以及独特的光学性质,在生物分子检测、诊断和治疗方面具有很大的发展潜力。尤其是纳米金显示出特殊的表面等离子体共振现象,导致了粒子表面产生强电磁场,并最终增强了诸如吸收和散射的辐射特性,其散射光强与粒子的尺寸和团聚状态有密切关系。而由于共振现象而产生的纳米金对光的强烈吸收并高效转换为热效应也被用于检测和治疗。此外,与纳米金尺寸相关的局域表面等离子体共振光学特性,能够在粒子附近产生很强的电磁场增强,从而构成表面增强拉曼散射的基础。纳米金在强光照射下也表现出良好的抗光漂白的荧光现象,其特有的荧光寿命也成为检测的一种有效手段。与其他荧光物质作用时,又表现出表面增强荧光特性以及荧光共振能量转移。综述中,在介绍纳米金这些特殊光学性质的基础上,回顾了其在生物分子检测方面的应用进展。
Abstract
Gold nanoparticles are one of the most widely studied nanoscale materials in recent years. It has great potential applications in area of bimolecular detection, diagnosis and therapy, due to their unique optical properties, facile surface chemistry, excellent biocompability and chemical stability. Especially, gold nanoparticles exhibit a unique phenomenon:strong surface plasmon resonance that lead to strong electromagnetic fields on the particle surface and consequently enhances all the radiative properties such as absorption and scattering. The scattering light intensity is extremely sensitive to the size and aggregation state of the particles, and the efficient conversion from light into heat by these gold nanoparticles can also be used for detection and therapy. Additionally, the main parameter of size-dependant optical properties of gold nanoparticles is the localized surface plasmon resonance (LSPR) known to generate a strong local enhancement of the electromagnetic field at the vicinity of the nanoparticles, this phenomenon is the basis of the surface enhanced Raman scattering. Furthermore, gold nanoparticles show excellent behavior of anti-photobleaching under the presence of strong light illumination, its fluorescence lifetime imaging can be used to detect such as cancer cells using molecularly targeted gold nanoparticles. Gold nanoparticle-based enhancement fluorescence emission and fluorescience resonance energy transfer were also discussed. In this review, we cover these important optical properties of gold nanoparticels and address their recent application on bioprobe.
参考文献

[1] QIN Z, BISCHOF J C. Thermophysical and biological responses of gold nanoparticle laser heating [J]. Chemical Society Reviews, 2012, 41(3):1191-1217.

[2] LIU J, MAZUMDAR D, LU Y. A simple and sensitive “dipstick” test in serum based on lateral flow separation of aptamer‐linked nanostructures [J]. Angewandte Chemie, 2006, 118(47):8123-8127.

[3] ASLAN K, LAKOWICZ J R, GEDDES C D. Tunable plasmonic glucose sensing based on the dissociation of Con A-aggregated dextran-coated gold colloids [J]. Analytica Chimica Acta, 2004, 517(1):139-144.

[4] JAIN P K, LEE K S, EL-SAYED I H, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition:applications in biological imaging and biomedicine [J]. The Journal of Physical Chemistry B, 2006, 110(14):7238-7248.

[5] 屈晓超, 梁佳明, 姚翠萍, et al. 金纳米微粒的光学性质及其在生物成像和光热疗法中的应用 [J]. 中国激光. 2007, 34(11):1459-1465.

    QU Xiaochao, LIANG Jiaming, YAO Cuiping, et al. Optical properties of gold nanoparticle and its appl ication in biological imaging and photothermal therapy[J]. Chinese Journal of Lasers, 2007, 34(11):1459-1465.

[6] MIE G. Beitrge zur Optik trüber Medien, speziell kolloidaler Metallsungen [J]. Annalen der Physik, 1908, 330(3):377-445.

[7] KREIBIG U, VOLLMER M. Optical properties of metal clusters [M]. 1995.

[8] OLDENBURG S, AVERITT R, WESTCOTT S, et al. Nanoengineering of optical resonances [J]. Chemical Physics Letters, 1998, 288(2):243-247.

[9] KUMAR A, BORUAH B M, LIANG X J. Gold nanoparticles:promising nanomaterials for the diagnosis of cancer and HIV/AIDS [J]. Journal of Nanomaterials, 2011, 2011:22.

[10] HALAS N J, LAL S, CHANG W S, et al. Plasmons in strongly coupled metallic nanostructures [J]. Chem Rev, 2011, 111(6):3913-3961.

[11] ELGHANIAN R, STORHOFF J J, MUCIC R C, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles [J]. Science, 1997, 277(5329):1078-1081.

[12] LONGHUA Z, HUANG R, SU R, et al. Green synthesis of a gold nanoparticle-nanoclusters composite nanostructures using trypsin as linking and reducing agents [J]. ACS Sustainable Chemistry & Engineering, 2013.

[13] SRIVASTAVA S, FRANKAMP B L, ROTELLO V M. Controlled plasmon resonance of gold nanoparticles self-assembled with PAMAM dendrimers [J]. Chemistry of Materials, 2005, 17(3):487-490.

[14] ZHAO W, BROOK M A, LI Y. Design of gold nanoparticle-based colorimetric biosensing assays [J]. ChemBioChem, 2008, 9(15):2363-2371.

[15] SHIPWAY A N, KATZ E, WILLNER I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications [J]. ChemPhysChem, 2000, 1(1):18-52.

[16] ASLAN K, LAKOWICZ J R, GEDDES C D. Plasmon light scattering in biology and medicine:new sensing approaches, visions and perspectives [J]. Current Opinion in Chemical Biology, 2005, 9(5):538-544.

[17] YGUERABIDE J, YGUERABIDE E E. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications:I. Theory [J]. Analytical Biochemistry, 1998, 262(2):137-156.

[18] WANG Z, MA L. Gold nanoparticle probes [J]. Coordination Chemistry Reviews, 2009, 253(11):1607-1618.

[19] SAHA K, AGASTI S S, KIM C, et al. Gold nanoparticles in chemical and biological sensing [J]. Chem Rev, 2012, 112(5):2739-2779.

[20] GUILLOT N, SHEN H, FR MAUX B, et al. Surface enhanced Raman scattering optimization of gold nanocylinder arrays:Influence of the localized surface plasmon resonance and excitation wavelength[J].Applied Physics Letters, 2010, 97(2):023113.

[21] KNEIPP K, KNEIPP H, ITZKAN I, et al. Ultrasensitive chemical analysis by Raman spectroscopy [J]. Chem Rev, 1999, 99(10):2957-2976.

[22] XU H, AIZPURUA J, KMLL M, et al. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering [J]. Physical Review E, 2000, 62(3):4318.

[23] P RON O, RINNERT E, LEHAITRE M, et al. Detection of polycyclic aromatic hydrocarbon (PAH) compounds in artificial sea-water using surface-enhanced Raman scattering (SERS) [J]. Talanta, 2009, 79(2):199-204.

[24] HAYNES C L, VAN DUYNE R P. Plasmon-sampled surface-enhanced Raman excitation spectroscopy [J]. The Journal of Physical Chemistry B, 2003, 107(30):7426-7433.

[25] GRAND J, DE LA CHAPELLE M L, BIJEON J-L, et al. Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays [J]. Physical Review B, 2005, 72(3):033407.

[26] ZUMBUSCH A, HOLTOM G R, XIE X S. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering [J]. Physical Review Letters, 1999, 82(20):4142-4145.

[27] HE H, XIE C, REN J. Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging [J]. Analytical chemistry, 2008, 80(15):5951-5957.

[28] ABDELHALIM M, MADY M, GHANNAM M. Physical properties of different gold nanoparticles:ultraviolet-visible and fluorescence measurements [J]. J Nanomed Nanotechol, 2012, 3(100133):5.

[29] GOLDYS E M, SOBHAN M A. Fluorescence of colloidal gold nanoparticles is controlled by the surface adsorbate [J]. Advanced Functional Materials, 2012, 22(9):1906-1913.

[30] DULKEITH E, NIEDEREICHHOLZ T, KLAR T, et al. Plasmon emission in photoexcited gold nanoparticles [J]. Physical Review B, 2004, 70(20):205424.

[31] SOBHAN M A, AMS M, WITHFORD M J, et al. Ultrafast laser ablative generation of gold nanoparticles:the influence of pulse energy, repetition frequency and spot size [J]. Journal of Nanoparticle Research, 2010, 12(8):2831-2842.

[32] 吕凤婷, 郑海荣, 房喻. 表面增强荧光研究进展[J]. 化学进展. 2007, 19(2):256-266.

    LV Fengting, ZHENG Hairong, FANG Yu. Studies of surface-enhanced fluorescence[J]. Progress in Chemistry, 2007, 19(2):256-266.

[33] SAPSFORD K E, BERTI L, MEDINTZ I L. Materials for fluorescence resonance energy transfer analysis:beyond traditional donor-acceptor combinations [J]. Angewandte Chemie International Edition, 2006, 45(28):4562-4589.

[34] DULKEITH E, RINGLER M, KLAR T, et al. Gold nanoparticles quench fluorescence by phase induced radiative rate suppression [J]. Nano letters, 2005, 5(4):585-589.

[35] RAY P C, FORTNER A, DARBHA G K. Gold nanoparticle based FRET asssay for the detection of DNA cleavage [J]. The Journal of Physical Chemistry B, 2006, 110(42):20745-20748.

[36] THOMAS K G, KAMAT P V. Chromophore-functionalized gold nanoparticles [J]. Accounts of Chemical Research, 2003, 36(12):888-898.

[37] VARNAVSKI O P, MOHAMED M B, EL-SAYED M A, et al. Relative enhancement of ultrafast emission in gold nanorods [J]. The Journal of Physical Chemistry B, 2003, 107(14):3101-3104.

[38] QU X C, WANG J, YAO C P, et al. Two-photon imaging of lymphoma cells targeted by gold nanoparticles [J]. Chinese Optics Letters, 2008, 6(12):879-881.

[39] TSAI C-S, YU T-B, CHEN C-T. Gold nanoparticle-based competitive colorimetric assay for detection of protein-protein interactions [J]. Chemical Communications, 2005, (34):4273-4275.

[40] MART NEZ-M EZ R, SANCEN N F. Fluorogenic and chromogenic chemosensors and reagents for anions [J]. Chem Rev, 2003, 103(11):4419-4476.

[41] WEI H, LI B, LI J, et al. Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes [J]. Chem Commun, 2007, (36):3735-3737.

[42] HIRSCH L R, STAFFORD R J, BANKSON J A, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance [J]. Proc Natl Acad Sci U S A. 2003, 100(23):13549-13554.

[43] PARK J H, VON MALTZAHN G, XU M J, et al. Cooperative nanomaterial system to sensitize, target, and treat tumors [J]. Proc Natl Acad Sci U S A, 2010, 107(3):981-986.

[44] PISSUWAN D, VALENZUELA S M, CORTIE M B. Therapeutic possibilities of plasmonically heated gold nanoparticles [J]. Trends Biotechnol, 2006, 24(2):62-67.

[45] DIAGARADJANE P, SHETTY A, WANG J C, et al. Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia:characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy [J]. Nano Lett, 2008, 8(5):1492-1500.

[46] PITSILLIDES C M, JOE E K, WEI X, et al. Selective cell targeting with light-absorbing microparticles and nanoparticles [J]. Biophysical Journal, 2003, 84(6):4023-4032.

[47] YAO C, QU X, ZHANG Z, et al. Influence of laser parameters on nanoparticle-induced membrane permeabilization [J]. J Biomed Opt, 2009, 14(5):054034.

[48] BRAUN G B, PALLAORO A, WU G, et al. Laser-Activated Gene Silencing via Gold Nanoshell-siRNA Conjugates [J]. ACS Nano, 2009, 3(7):2007-2015.

[49] KYRSTING A, BENDIX P M, STAMOU D G, et al. Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release [J]. Nano Lett, 2011, 11(2):888-892.

[50] STEHR J, HRELESCU C, SPERLING R A, et al. Gold nanostoves for microsecond DNA melting analysis [J]. Nano Lett, 2008, 8(2):619-623.

[51] JAIN P K, QIAN W, EL-SAYED M A. Ultrafast cooling of photoexcited electrons in gold nanoparticle-thiolated DNA conjugates involves the dissociation of the gold-thiol bond [J]. J Am Chem Soc, 2006, 128(7):2426-2433.

[52] YAN C, PATTANI V, TUNNELL J W, et al. Temperature-induced unfolding of epidermal growth factor (EGF):insight from molecular dynamics simulation [J]. J Mol Graph Model, 2010, 29(1):2-12.

[53] 姚翠萍, 张镇西, 姚保利. 金纳米微粒辅助细胞激光热作用疗法研究[J]. 生物化学与生物物理进展, 2007, 34(3):312-316.

    YAO Cuiping, ZHANG Zhenxi, YAO Baoli. Laser irradiation cell photothermal therapy assisted by gold nanoparticles[J]. Progress in Biochemistry and Biophysics, 2007, 34(3):312-316.

[54] YAO C P, RAHMANZADEH R, ENDL E, et al. Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles [J]. Journal of Biomedical Optics, 2005, 10(6):064012.

[55] QU X, YAO C, WANG J, et al. Anti-CD30-targeted gold nanoparticles for photothermal therapy of L-428 Hodgkin’s cell [J]. Int J Nanomedicine, 2012, 7:6095-6103.

[56] LEDUC C, JUNG J M, CARNEY R P, et al. Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging [J]. Acs Nano, 2011, 5(4):2587-2592.

[57] ASLAN K, LAKOWICZ J R, GEDDES C D. Nanogold plasmon resonance-based glucose sensing. 2. Wavelength-ratiometric resonance light scattering [J]. Analytical Chemistry, 2005, 77(7):2007-2014.

[58] WANG X, ZOU M, XU X, et al. Determination of human urinary kanamycin in one step using urea-enhanced surface plasmon resonance light-scattering of gold nanoparticles [J]. Analytical and Bioanalytical Chemistry, 2009, 395(7):2397-2403.

[59] KNEIPP J, KNEIPP H, WITTIG B, et al. Following the Dynamics of pH in endosomes of live cells with SERS nanosensors [J]. The Journal of Physical Chemistry C, 2010, 114(16):7421-7426.

[60] QU L-L, LI D-W, QIN L-X, et al. Selective and sensitive detection of intracellular O2·- using Au NPs/cytochrome c as SERS nanosensors [J]. Analytical Chemistry, 2013.

[61] KANG T, YOO S M, YOON I, et al. Patterned multiplex pathogen DNA detection by Au particle-on-wire SERS sensor [J]. Nano Letters, 2010, 10(4):1189-1193.

[62] CAO Y C, JIN R, NAM J M, et al. Raman dye-labeled nanoparticle probes for proteins [J]. Journal of the American Chemical Society, 2003, 125(48):14676-14677.

[63] WANG Y, TANG L J, JIANG J H. Surface-enhanced raman spectroscopy-based, homogeneous, multiplexed immunoassay with antibody-fragments-decorated gold nanoparticles [J]. Analytical Chemistry, 2013, 85(19):9213-9220.

[64] HU J, ZHENG P C, JIANG J H, et al. Electrostatic interaction based approach to thrombin detection by surface-enhanced Raman spectroscopy [J]. Analytical Chemistry, 2008, 81(1):87-93.

[65] WANG Y, LEE K, IRUDAYARAJ J. SERS aptasensor from nanorod-nanoparticle junction for protein detection [J]. Chem Commun, 2010, 46(4):613-615.

[66] MAHER R, MAIER S, COHEN L, et al. Exploiting SERS Hot Spots for Disease-Specific Enzyme Detection [J]. The Journal of Physical Chemistry C, 2010, 114(16):7231-7235.

[67] RUAN C, WANG W, GU B. Detection of alkaline phosphatase using surface-enhanced Raman spectroscopy [J]. Analytical Chemistry, 2006, 78(10):3379-3384.

[68] LAKOWICZ J R. Radiative decay engineering 3. Surface plasmon-coupled directional emission [J]. Analytical Biochemistry, 2004, 324(2):153-169.

[69] LAKOWICZ J R. Radiative decay engineering 5:metal-enhanced fluorescence and plasmon emission [J]. Analytical Biochemistry, 2005, 337(2):171-194.

[70] VIGNY P, FAVRE A. Fluorescence and photochemistry of oligocytidylic and polycytidylic acids in aqueous solution [J]. Photochemistry and Photobiology, 1974, 20(4):345-349.

[71] FAVRE A, VIGNY P. EXCITED STATES OF NUCLEIC ACIDS [J]. Photochemistry and Photobiology, 1975, 22(6):288-291.

[72] CHEN G W, SONG F L, XIONG X Q, et al. Fluorescent Nanosensors based on fluorescence resonance energy transfer (FRET) [J]. Ind Eng Chem Res, 2013, 52(33):11228-11245.

[73] SEFEROS D S, GILJOHANN D A, HILL H D, et al. Nano-flares:probes for transfection and mRNA detection in living cells [J]. Journal of the American Chemical Society, 2007, 129(50):15477-15479.

[74] JIN Y, LI H, BAI J. Homogeneous selecting of a quadruplex-binding ligand-based gold nanoparticle fluorescence resonance energy transfer assay [J]. Analytical Chemistry, 2009, 81(14):5709-5715.

[75] ZHANG J, WANG L, ZHANG H, et al. Aptamer-Based multicolor fluorescent gold nanoprobes for multiplex detection in homogeneous solution [J]. Small, 2010, 6(2):201-204.

[76] HUANG T, MURRAY R W. Quenching of [Ru (bpy) 3] 2+ fluorescence by binding to Au nanoparticles [J]. Langmuir, 2002, 18(18):7077-7081.

[77] HUANG C C, CHANG H T. Selective gold-nanoparticle-based “turn-on” fluorescent sensors for detection of mercury (II) in aqueous solution [J]. Analytical Chemistry, 2006, 78(24):8332-8338.

[78] HE X, LIU H, LI Y, et al. Gold nanoparticle-based fluorometric and colorimetric sensing of copper (II) ions [J]. Advanced Materials, 2005, 17(23):2811-2815.

[79] CHEN S J, CHANG H T. Nile red-adsorbed gold nanoparticles for selective determination of thiols based on energy transfer and aggregation [J]. Analytical Chemistry, 2004, 76(13):3727-3734.

[80] ZHANG N, LIU Y, TONG L, et al. A novel assembly of Au NPs-β-CDs-FL for the fluorescent probing of cholesterol and its application in blood serum [J]. Analyst, 2008, 133(9):1176-1181.

[81] CHEN C T, CHEN W J, LIU C Z, et al. Glutathione-bound gold nanoclusters for selective-binding and detection of glutathione S-transferase-fusion proteins from cell lysates [J]. Chem Commun, 2009, (48):7515-7517.

[82] WU C, XIONG C, WANG L, et al. Sensitive and selective localized surface plasmon resonance light-scattering sensor for Ag+ with unmodified gold nanoparticles [J]. Analyst, 2010, 135(10):2682-2687.

姚翠萍, 王萌萌, 王晶, 张镇西. 基于纳米金光学性质的分子检测与应用[J]. 激光生物学报, 2015, 24(4): 303. YAO Cuiping, WANG Mengmeng, WANG Jing, ZHANG Zhenxi. Gold Nanoparticles:Optical Properties and Implementations in Molecular Detection[J]. Acta Laser Biology Sinica, 2015, 24(4): 303.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!