作者单位
摘要
西藏大学太阳紫外线实验室, 西藏 拉萨 850000
利用国际标准RAMSES光谱仪和CMP11型太阳总辐射仪, 在2019年至2020年期间对中国北纬30°区域8个城市(西藏阿里、 日喀则、 拉萨、 林芝、 成都、 武汉、 杭州、 上海)进行了地面太阳辐射的观测研究。 观测结果表明在中国北纬30°区域, 西藏总体太阳光谱不仅强度上远远高于低海拔的内地城市, 而且光谱曲线在形态特征上比低海拔更光滑, 吸收弱。 观测期间西藏最大地面单色太阳光谱强度可达2 018.48 mW·(m2·nm)-1(阿里, 2020年6月21日), 同纬度其他内地城市最大地面单色太阳光谱强度仅为756.22 mW·(m2·nm)-1(成都, 2019年11月03日); 西藏地面太阳光谱中所含紫外光谱(280~400 nm)比内地低海拔高出约1.5倍以上, 强烈的紫外线对西藏生态和人体健康产生相应影响; 观测期间发现拉萨地面太阳光谱强度约为成都的1.5~1.7倍; 阿里地面太阳光谱强度比上海高出约0.2倍。 观测结果为北纬30°区域太阳能资源的利用和生态环境等研究提供实地太阳光谱数据; 对2020年夏至发生的日食现象进行了太阳光谱的同步观测研究, 发现日食期间拉萨、 阿里辐射能量损失均超过95%。 分析了云、 气溶胶等大气因子对太阳光谱、 太阳总辐射的影响。 研究表明西藏阿里等地夏季太阳总辐射值频频超过太阳常数。
西藏 北纬30°N 太阳光谱 观测 日食 Tibet 30°N latitude Solar spectra Observation Solar eclipse 
光谱学与光谱分析
2023, 43(6): 1881
作者单位
摘要
1 山东大学晶体材料国家重点实验室,济南 250100
2 国科光电科技有限责任公司,北京 100094
3 山东省工业技术研究院,济南 250100
倍半氧化物具有优异的热学性能、稳定的物化性能、低的最大声子能量和强的晶体场,是理想的高功率、大能量激光基质材料。倍半氧化物具有超高熔点,因此其高质量、大尺寸的晶体制备极其困难,研究人员对此进行了长期的研究探索。近年激光技术发展对高品质倍半氧化物单晶的迫切需求促使相关晶体的生长技术取得了突破。本文在简单介绍倍半氧化物性能与结构的基础上,详细综述了Lu2O3、Sc2O3、Y2O3倍半氧化物晶体的生长方法及缺陷种类,系统总结了稀土离子掺杂的倍半氧化物在1~3 μm波段内的激光性能,最后对其未来的研究与发展方向进行了展望。
倍半氧化物 激光基质材料 晶体生长 晶体缺陷 激光性能 sesquioxide host material for laser crystal growth crystal defect laser performance Lu2O3 Lu2O3 Sc2O3 Sc2O3 Y2O3 Y2O3 
人工晶体学报
2023, 52(7): 1169
阮景 1,2,3杨金山 1,2,*闫静怡 1,2,4游潇 1,2,4[ ... ]董绍明 1,2,5,*
作者单位
摘要
1 1. 中国科学院 上海硅酸盐研究所, 高性能陶瓷和超微结构国家重点实验室, 上海 200050
2 2. 中国科学院 上海硅酸盐研究所, 结构陶瓷及复合材料工程研究中心, 上海 201899
3 3. 上海科技大学 物质科学与技术学院, 上海 201210
4 4. 中国科学院大学, 北京 100039
5 5. 中国科学院大学 材料科学与光电工程中心, 北京 100049
碳化硅纳米线具有优异的电磁吸收性能, 三维网络结构可以更好地使电磁波在空间内被多次反射和吸收。通过抽滤的方法制备得到体积分数20%交错排列的碳化硅纳米线网络预制体。然后采用化学气相渗透工艺制备热解炭界面和碳化硅基体, 并通过化学气相渗透和前驱体浸渍热解工艺得到致密的SiCNWs/SiC陶瓷基复合材料。甲烷和三氯甲基硅烷分别是热解炭和碳化硅的前驱体, 随着热解碳质量分数从21.3%增加到29.5%, 多孔SiCNWs预制体电磁屏蔽效率均值在8~12 GHz (X)波段从9.2 dB增加到64.1 dB。质量增重13%的热解碳界面修饰的SiCNWs/SiC陶瓷基复合材料在X波段平均电磁屏蔽效率达到37.8 dB电磁屏蔽性能。结果显示, SiCNWs/SiC陶瓷基复合材料在新一代**电磁屏蔽材料中具有潜在应用前景。
碳化硅纳米线 电磁屏蔽 陶瓷基复合材料 热解碳 SiC基体 SiC nanowire electromagnetic interference shielding ceramic matrix composite PyC deposition SiC matrix 
无机材料学报
2022, 37(5): 579
阮景 1,2,3杨金山 1,2,*闫静怡 1,2,4游潇 1,2,4[ ... ]董绍明 1,2,5,*
作者单位
摘要
1 1.中国科学院 上海硅酸盐研究所 高性能陶瓷和超微结构国家重点实验室, 上海 200050
2 2.中国科学院 上海硅酸盐研究所 结构陶瓷及复合材料工程研究中心, 上海 201899
3 3.上海科技大学 物质学院, 上海 201210
4 4.中国科学院大学, 北京 100039
5 5.中国科学院大学 材料科学与光电工程中心, 北京 100049
构建多孔碳化硅纳米线(SiCNWs)网络并控制化学气相渗透(CVI)过程,可设计并获得轻质、高强度和低导热率SiC复合材料。首先将SiCNWs和聚乙烯醇(PVA)混合,制备具有最佳体积分数(15.6%)和均匀孔隙结构的SiCNWs网络;通过控制CVI参数获得具有小而均匀孔隙结构的SiCNWs增强多孔SiC(SiCNWs/SiC)陶瓷基复合材料。SiC基体形貌受沉积参数(如温度和反应气体浓度)的影响,从球状颗粒向六棱锥颗粒形状转变。SiCNWs/SiC陶瓷基复合材料的孔隙率为38.9%时,强度达到(194.3±21.3) MPa,导热系数为(1.9 ± 0.1) W/(m∙K),显示出增韧效果,并具有低导热系数。
SiC基复合材料 碳化硅纳米线 CVI参数 孔隙率 热导率 SiC ceramic matrix composite silicon carbide nanowire CVI parameter porosity thermal conductivity 
无机材料学报
2022, 37(4): 459
作者单位
摘要
西安交通大学生命科学与技术学院生物医学信息工程教育部重点实验室, 陕西 西安710049
纳米金颗粒是近年研究最为广泛的纳米材料之一,它具有良好的生物相容性、化学稳定性以及独特的光学性质,在生物分子检测、诊断和治疗方面具有很大的发展潜力。尤其是纳米金显示出特殊的表面等离子体共振现象,导致了粒子表面产生强电磁场,并最终增强了诸如吸收和散射的辐射特性,其散射光强与粒子的尺寸和团聚状态有密切关系。而由于共振现象而产生的纳米金对光的强烈吸收并高效转换为热效应也被用于检测和治疗。此外,与纳米金尺寸相关的局域表面等离子体共振光学特性,能够在粒子附近产生很强的电磁场增强,从而构成表面增强拉曼散射的基础。纳米金在强光照射下也表现出良好的抗光漂白的荧光现象,其特有的荧光寿命也成为检测的一种有效手段。与其他荧光物质作用时,又表现出表面增强荧光特性以及荧光共振能量转移。综述中,在介绍纳米金这些特殊光学性质的基础上,回顾了其在生物分子检测方面的应用进展。
纳米金 光学性质 生物分子检测 gold nanoparticles optical properties bio-molecule detection 
激光生物学报
2015, 24(4): 303
作者单位
摘要
1 西安交通大学生物医学信息工程教育部重点实验室, 生命科学与技术学院, 陕西 西安 710049
2 西安交通大学电气工程学院, 陕西 西安 710049
在不同功率激光照射下, 纳米金与周围介质会经历不同的物理学效应, 并产生宏观、微观和纳观三个层次的生物学效应及相应的应用。其中纳观效应的生物学应用和机理研究受到了关注并具有挑战性。本文针对纳米金激光纳观热效应的物理学机理研究及其相应模型进行综述, 比较了各种模型和测量方法的利弊, 对其生物学应用进行了论述, 指出了其中的某些发展趋势, 强调了纳米金激光纳观热效应研究的必要性和重要性。
医用光学 纳观热效应 纳米金 激光 medical optics nanoscale heating gold nanoparticles laser 
激光生物学报
2014, 23(1): 1

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!