红外与毫米波学报, 2019, 38 (4): 04464, 网络出版: 2019-10-14  

基于广义变分和误差重估计高光谱AIRS通道亮温同化

Assimilation of hyper-spectral AIRS brightness temperatures based on generalized variational assimilation and observation error re-estimation
作者单位
1 安徽省气象信息中心 强天气集合分析和预报重点实验室,安徽 合肥 230031
2 中国气象局沈阳大气环境研究所,辽宁 沈阳 110016
3 安徽省气象科学研究所,安徽 合肥 230031
4 中国科学技术大学 数学学院,安徽 合肥 230022
5 安徽建筑大学 环境与能源工程学院,安徽 合肥 230601
摘要
高光谱大气红外探测器(Atmospheric Infrared Sounder,AIRS)主要覆盖CO2和H2O吸收带光谱区.区别于CO2通道,H2O通道亮温偏差非高斯性较强.为了充分有效地利用AIRS通道光谱信息,本文采用两种新算法开展应用研究,一是基于变分同化后验估计-观测误差重估计重新估算光谱通道误差,以更好地“符合”光谱亮温对变分同化目标泛函的权值分配;二是将M—估计法(L2—估计、Huber—估计、Fair—估计和Cauchy—估计)权重函数耦合到经典变分同化目标泛函中,得到广义变分同化目标泛函,使其具有非高斯性,其核心是在每次极小化迭代过程中重新估计观测项对目标泛函贡献率.在新算法研究基础上开展高光谱AIRS模拟亮温试验,结果表明观测误差重估计和Huber—估计广义变分同化AIRS资料效果优于经典变分同化.并基于信号自由度(Degrees of freedom for signal,DFS)开展观测资料对分析场影响诊断,得到该两种方法在同化过程中能够提高H2O通道亮温使用的信息量.通过对文中算法(观测误差重估计和Huber—估计)得到的分析场与探空资料温度场对比分析,得到Huber-估计广义尺度设定为1.345 K时效果最好,整体误差最小,2.5K次之,且观测误差重估计也优于经典变分同化结果.200~750 hPa效果较为显著,基于Huber-估计广义同化在对流层顶表面和周围(80~200 hPa)温度反演小于2 K.研究结果可为我国风云四号A星和风云三号D星高光谱资料变分同化提供新的方法思路和技术支撑.
Abstract
Hyper-spectral Atmospheric Infrared Sounder (AIRS) mainly covers the CO2 and H2O absorption bands. Different from CO2 channels, the brightness temperature bias of water vapor channel follows non-Gaussian statistics. In order to use AIRS channel spectral information effectively, new algorithm research is needed, two methods are presented in this paper: (1)Different from the observation error of the given spectral channel remains unchanged during the classical variational assimilation minimization iteration, the paper based on the posterior estimate of variational assimilation, namely, observation error re-estimation, re-estimating the channel observation error, which is then regarded as the weight of observation to the objective function of classical variational assimilation; Observation error re-estimation can be used to identify the reasonable observation errors which can fit variational assimilation model better. By using the weight function of M-estimators (L2-estimator, Huber-estimator, Fair-estimator and Cauchy-estimator) to couple the classical variational assimilation, and then obtain the generalized variational assimilation, make it Non-Gaussian. Re-estimated the contribution rate of observation terms to the objective function during each minimization iteration. The simulated brightness temperatures of AIRS are used to conduct ideal experiments. It is shown that two methods of observation error re-estimation and Huber-estimator can provide better results than the classical method. We diagnose the impact of observations on the analysis with degrees of freedom for signal (DFS). The result of diagnosis shows that two methods can increase the available information of brightness temperatures of water vapour channels during the assimilation process. Furthermore, the analysis field obtained by using the algorithm (observation error re-estimation and Huber-estimator) in this paper is compared with the temperature field of sounding data, and it is obtained that the Huber-estimator, which generalized scale is set as 1.345 K with the best effect, which is set as 2.5 K latter, and the observation error re-estimation is better than classical variational assimilation. The effect of 200~750 hPa was relatively significant. The retrieval temperature at the surface and around the tropopause (80~200 hPa)is less than 2 K based on Huber-estimator variational assimilation. The results of this paper can lay the theoretical foundation and provide the algorithm reference for the variational assimilation of hyper-spectral data of Feng-Yun 4A and Feng-Yun 3D satellite.
参考文献

[1] Aumann H H, Chahine M T, Gautier C, et al. AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2): 253-264.

[2] ZHAO Qiang, HAN Lu, YANG Shi-Zhi, et al. Retrieval of atmospheric profile by hyperspectral infrared satellite data[J].Journal of Atmospheric and Environmental Optics,(赵强,韩露,杨世植,等.利用超光谱红外卫星数据反演大气廓线研究.大气与环境光学学报), 2016, 11(2): 118-124.

[3] Wang G, Zhang J W. Generalised variational assimilation of cloud-affected brightness temperature using simulated hyper-spectral atmospheric infrared sounder data[J]. Advances in Space Research, 2014, 54(1):49-58.

[4] WANG Gen, ZHANG Hua, YANG Yin. Research progress of quality control for AIRS data[J]. Advances in Earth Science,(王根,张华,杨寅. 高光谱大气红外探测器AIRS 资料质量控制研究进展. 地球科学进展),2017,32(2):139-150.

[5] WANG Gen, TANG Fei, LIU Xiao-Bei, et al. Application of M-estimators method on FY-3B/IRAS channel brightness temperature generalized variational assimilation[J]. Journal of Remote Sensing, (王根, 唐飞, 刘晓蓓,等. M-估计法广义变分同化FY-3B/IRAS通道亮温.遥感学报),2017, 21(1): 52-61.

[6] Bormann N, Geer A J, Bauer P. Estimates of observation-error characteristics in clear and cloudy regions for microwave imager radiances from numerical weather prediction[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(661): 2014-2023.

[7] Desroziers G, Berre L, Chapnik B. Diagnosis of observation, background and analysis-error statistics in observation space [J]. Quarterly Journal of the Royal Meteorological Society, 2005, 131(613): 3385-3396.

[8] McNally A P, Watts P D, Smith J, et al. The assimilation of AIRS radiance data at ECMWF[J]. Quarterly Journal of the Royal Meteorological Society, 2006, 132(616):935-957.

[9] Smith W L, Woolf H M, Hayden C M, et al. TIROS-N operational vertical sounder[J]. Bulletin of the American Meteorological Society, 1979, 60(10): 1177-1187.

[10] James A J, John F L, Lars P. The Development of hyper-spectral infrared water vapor radiance assimilation techniques in the NCEP global forecast system. ECMWF/ EUMETSAT NWP-SAF Workshop on the assimilation of IASI in NWP, 6-8 8 May, 2009.

[11] Fowler A, Leeuwen J. Observation impact in data assimilation: the effect of non-Gaussian observation error[J].Tellus A:Dynamic Meteorology and Oceanography, 2013, 65(1), DOI: 10.3402.

[12] WANG Gen, SHENG Shao-Xue, LIU Hui-Lan, et al. Discontinuous data 3D/4D variation fusion based on the constraint of L1 norm regularization term[J]. Advances in Earth Science,(王根,盛绍学,刘惠兰,等. 基于L1 范数正则项约束的不连续资料三维/四维变分融合研究.地球科学进展),2017,32(7):757-768.

[13] Li J, Han W. A step forward toward effectively using hyperspectral IR sounding information in NWP[J]. Advances in Atmospheric Sciences, 2017, 34:1263-1264.

[14] Fowler A. A sampling method for quantifying the information content of IASI channels [J]. Monthly Weather Review, 2017, 145(2):709-725.

[15] Saunders R, Brunel P, English S, et al. RTTOV-8-Science and validation report. Eumetsat/ ECMWF SAF Programme, Document ID NWPSAF-MOTV-007. 2005,Available from: NWP SAF Helpdesk, Met Office, FitzRoy Road, Exeter, EX1 3PB, UK.

[16] Waller J A, Ballard S P, Dance S L, et al. Diagnosing horizontal and inter-channel observation error correlations for SEVIRI observations using observation-minus-background and observation-minus-analysis statistics[J]. Remote Sensing, 2016, 8(7). 851. ISSN 2072-4292.

[17] Joiner J, Brin E, Treadon R, et al. Effects of data selection and error specification on the assimilation of AIRS data[J].Quarterly Journal of the Royal Meteorological Society, 2007,133(622): 181-196.

[18] Pavelin E G, English S J, Eyre J R. The assimilation of cloud affected infrared satellite radiances for numerical weather prediction[J]. Quarterly Journal of the Royal Meteorological Society, 2008,134(632):737-749.

[19] LIU Hui, DONG Chao-Hua, ZHANG Wen-Jian, et al. Retrieval of clear-air atmospheric temperature profiles using AIRS observation[J].Acta Meteorological Sinica,(刘辉,董超华,张文建,等.AIRS晴空大气温度廓线反演试验.气象学报),2008,66(4):513-519.

[20] Noh Y, Sohn B, Kim Y, et al. A new infrared atmospheric sounding interferometer channel selection and assessment of its impact on Met Office NWP forecasts[J].Advances in Atmospheric Sciences, 2017, 34(11):1265-1281.

[21] Arai K, Liang X. Sensitivity analysis for air temperature profile estimation methods around the tropopause using simulated Aqua/AIRS data [J]. Advances in Space Research, 2009, 43(1):845-851.

[22] Tavolato C, Isaksen L. On the use of a Huber norm for observation quality control in the ECMWF 4D-Var[J].Quarterly Journal of the Royal Meteorological Society, 2015,141(690):1514-1527.

[23] YANG Yu-Han, YIN Qiu, SHU Jiong. Channel selection of atmosphere vertical sounder (GIIRS) onboard the FY-4A geostationary satellite[J].Journal of Infrared and Millimeter Waves,(杨雨晗,尹球,束炯.FY-4A大气垂直探测仪 (GIIRS) 温度探测通道优选.红外与毫米波学报), 2018,37(5):545-552.

[24] BAI Wen-Guang, ZHANG Peng, ZHANG Wen-Jian, et al. An efficient method for hyper-spectral infrared atmospheric radiation transfer calculation[J].Journal of Infrared and Millimeter Waves, (白文广,张鹏,张文建,等.一种高效计算高光谱分辨率红外大气辐射传输的方法.红外与毫米波学报),2016,35(1):99-108.

王根, 张正铨, 邓淑梅, 刘惠兰. 基于广义变分和误差重估计高光谱AIRS通道亮温同化[J]. 红外与毫米波学报, 2019, 38(4): 04464. WANG Gen, ZHANG Zheng-Quan, DENG Shu-Mei, LIU Hui-Lan. Assimilation of hyper-spectral AIRS brightness temperatures based on generalized variational assimilation and observation error re-estimation[J]. Journal of Infrared and Millimeter Waves, 2019, 38(4): 04464.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!