作者单位
摘要
1 安徽建筑大学环境与能源工程学院,安徽 合肥 230601
2 环境污染控制与废弃物资源化利用安徽省重点实验室,安徽 合肥 230601
近年来许多城市的臭氧(O3)污染问题日益突出。本文利用光谱辐射计MS-711对2018年7月份合肥市一处观测点的太阳辐射强度进行了连续观测,结合同时期的O3监测浓度和数值模拟结果,对太阳辐射与O3浓度的日变化关系以及O3形成机制进行了深入分析。研究结果表明,合肥夏季O3浓度峰值出现时间平均晚于太阳辐射强度峰值出现时间2~3 h,这种关联性与O3的形成机制有关。从地面往上至1 km高度的大气中,O3浓度随高度逐渐增加,夏季副高控制下对流抑制使得垂直扩散的平均效应将上层高浓度O3空气输入近地面层,使得地面O3浓度升高;而伴随降雨过程的暖湿抬升气流在近地面发生辐合起到了稀释作用,可能使得地面O3浓度下降。O3浓度的日变化是由太阳辐射直接驱动的光化学反应、干湿沉降和扩散传输等因素共同决定的。晴天O3的积累首先来自光化学过程,雨天O3浓度主要受垂直传输的影响,阴天太阳辐射主导O3增长阶段,但午后O3下降阶段则是由干湿沉降和水平通量主导的。
大气光学 太阳辐射 臭氧 数值模拟 
光学学报
2024, 44(6): 0601011
作者单位
摘要
1 安徽省气象信息中心 强天气集合分析和预报重点实验室,安徽 合肥 230031
2 中国气象局沈阳大气环境研究所,辽宁 沈阳 110016
3 安徽省气象科学研究所,安徽 合肥 230031
4 中国科学技术大学 数学学院,安徽 合肥 230022
5 安徽建筑大学 环境与能源工程学院,安徽 合肥 230601
高光谱大气红外探测器(Atmospheric Infrared Sounder,AIRS)主要覆盖CO2和H2O吸收带光谱区.区别于CO2通道,H2O通道亮温偏差非高斯性较强.为了充分有效地利用AIRS通道光谱信息,本文采用两种新算法开展应用研究,一是基于变分同化后验估计-观测误差重估计重新估算光谱通道误差,以更好地“符合”光谱亮温对变分同化目标泛函的权值分配;二是将M—估计法(L2—估计、Huber—估计、Fair—估计和Cauchy—估计)权重函数耦合到经典变分同化目标泛函中,得到广义变分同化目标泛函,使其具有非高斯性,其核心是在每次极小化迭代过程中重新估计观测项对目标泛函贡献率.在新算法研究基础上开展高光谱AIRS模拟亮温试验,结果表明观测误差重估计和Huber—估计广义变分同化AIRS资料效果优于经典变分同化.并基于信号自由度(Degrees of freedom for signal,DFS)开展观测资料对分析场影响诊断,得到该两种方法在同化过程中能够提高H2O通道亮温使用的信息量.通过对文中算法(观测误差重估计和Huber—估计)得到的分析场与探空资料温度场对比分析,得到Huber-估计广义尺度设定为1.345 K时效果最好,整体误差最小,2.5K次之,且观测误差重估计也优于经典变分同化结果.200~750 hPa效果较为显著,基于Huber-估计广义同化在对流层顶表面和周围(80~200 hPa)温度反演小于2 K.研究结果可为我国风云四号A星和风云三号D星高光谱资料变分同化提供新的方法思路和技术支撑.
高光谱 非高斯 广义变分同化 观测误差重估计 信号自由度 hyper-spectral non-gaussian generalized variational assimilation observation error re-estimation degrees of freedom for signal 
红外与毫米波学报
2019, 38(4): 04464
作者单位
摘要
安徽建筑大学环境与能源工程学院, 安徽 合肥 230601
大气温度、 水汽、 地表温度和地表发射率是大气和地表的本征信息量。 利用卫星红外资料精确反演大气温湿廓线有利于准确预报天气和研究气候变化, 同时地表温度和地表发射率光谱的反演为研究植物生长与作物产量、 地表水分蒸发与循环、 能量平衡、 地表成分及物理性质、 气候变迁与全球环境提供重要参数指标。 把大气和地面作为一个整体系统来考虑, 建立一种能同步反演大气温度廓线、 大气水汽廓线、 地表温度和地表发射率的反演方法, 利用超光谱红外卫星资料(atmospheric infrared sounder, AIRS), 针对我国新疆地区沙漠和雪地两种典型发射率地表同步反演大气温度廓线、 水汽廓线、 地表温度和地表发射率。 反演方法首先线性化地球-大气系统红外辐射传输方程, 提出通过经验正交函数构建大气廓线和地表发射率光谱, 有效减少反演变量数, 建立同步物理反演模式, 然后以美国国家环境预报中心(National Centers for Environmental Prediction, NCEP)的预报结果(初始大气温度、 水汽廓线以及地表参数)作为初始值, 最后通过牛顿迭代得到最优化解。 反演观测区域覆盖我国新疆塔克拉玛干沙漠和准噶尔盆地, 分别选择位于塔克拉玛干沙漠腹地的塔中探测站(纬度38.98°, 经度83.64°)和准噶尔盆地的阜康荒漠生态系统国家野外科学观测研究站(纬度44.2°, 经度87.9° )为反演地面验证点。 反演结果表明, 塔克拉玛干沙漠地表温度明显高于准噶尔盆地地表温度, 与实际情况相一致; 根据反演的8.6和13.4 μm处的地表发射率分布情况, 可以看出在8.6 μm处沙漠地表发射率明显低于雪地发射率, 在6~15 μm范围内, 反演的沙漠地区(塔中站)地表发射率和雪地地区(阜康站)地表发射率与美国喷气推进实验室测量的沙漠发射率光谱和雪地发射率光谱相一致。 研究表明, 把大气和地面作为一个整体系统来考虑, 把地表发射率加入到反演中, 通过比较和分析沙漠地区(塔中)和雪地地区(阜康)的大气廓线反演结果与当地气象探空值和传统反演方法反演值, 改进了大气温度廓线和水汽廓线反演精度, 特别是边界层温度和水汽改进尤为明显; 同时分析表明在发射率光谱变化较大的沙漠地区, 大气廓线反演精度的改进比雪地要高, 这是由于地表发射率光谱在沙漠、 戈壁地区变化较大, 而雪地的发射率光谱变化不大。 用该方法针对地表发射率光谱变化较大的地区(沙漠)同步反演大气廓线、 地表温度和地表发射率, 可以更有效的提高大气温度廓线、 水汽廓线的反演精度。 该研究结果可以为数值天气预报和我国未来超光谱红外卫星应用提供服务和有力支持, 具有十分重要的意义。Hyperspectral Infrared Satellite Data
大气温度 水汽 反演 发射率光谱 超光谱红外 Atmospheric temperature Water vapour Retrieval Emissivity spectrum Infrared hyperspectral 
光谱学与光谱分析
2019, 39(3): 693

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!