Photonics Research, 2020, 8 (11): 11001662, Published Online: Oct. 10, 2020   

Hybrid nano-scale Au with ITO structure for a high-performance near-infrared silicon-based photodetector with ultralow dark current Download: 669次

Author Affiliations
1 Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
4 The Yangtze River Delta Physics Research Center, Liyang 213000, China
5 Department of Physics, School of Science, Beijing Jiaotong University, Beijing 100044, China
6 Songshan Lake Materials Laboratory, Dongguan 523808, China
7 e-mail: hchen@iphy.ac.cn
Copy Citation Text

Xinxin Li, Zhen Deng, Jun Li, Yangfeng Li, Linbao Guo, Yang Jiang, Ziguang Ma, Lu Wang, Chunhua Du, Ying Wang, Qingbo Meng, Haiqiang Jia, Wenxin Wang, Wuming Liu, Hong Chen. Hybrid nano-scale Au with ITO structure for a high-performance near-infrared silicon-based photodetector with ultralow dark current[J]. Photonics Research, 2020, 8(11): 11001662.

References

[1] PratherD.ShiS.MurakowskiJ.SchneiderG.SharkawyA.ChenC.MiaoB., Silicon-Based Photonic Crystal Structures: From Design to Realization (Wiley, 2008), pp. 4793.

[2] D. Ahn, C.-Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. Kimerling, J. Michel, J. Chen, F. Kärtner. High performance, waveguide integrated Ge photodetectors. Opt. Express, 2007, 15: 3916-3921.

[3] D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. Krishnamoorthy, M. Asghari Khiavi. High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide. Appl. Phys. Lett., 2009, 95: 261105.

[4] A. Beling, J. C. Campbell. InP-based high-speed photodetectors. J. Lightwave Technol., 2009, 27: 343-355.

[5] E. Peiner, A. Guttzeit, H.-H. Wehmann. The effect of threading dislocations on optical absorption and electron scattering in strongly mismatched heteroepitaxial III–V compound semiconductors on silicon. J. Phys. Condens. Matter, 2002, 14: 13195-13201.

[6] Y.-T. Sun, K. Baskar, S. Lourdudoss. Thermal strain in indium phosphide on silicon obtained by epitaxial lateral overgrowth. J. Appl. Phys., 2003, 94: 2746-2748.

[7] Z. Sheng, L. Liu, J. Brouckaert, S. He, D. Thourhout. InGaAs PIN photodetectors integrated on silicon-on-insulator waveguides. Opt. Express, 2010, 18: 1756-1761.

[8] L. Pavesi, L. Negro, C. Mazzoleni, G. Franzo, F. Priolo. Optical gain in Si nanocrystals. Nature, 2000, 408: 440-444.

[9] J. Michel, J. Liu, L. Kimerling. High-performance Ge-on-Si photodetectors. Nat. Photonics, 2010, 4: 527-534.

[10] H. Meng, A. Atabaki, J. S. Orcutt, R. J. Ram. Sub-bandgap polysilicon photodetector in zero-change CMOS process for telecommunication wavelength. Opt. Express, 2015, 23: 32643-32653.

[11] T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, M. Notomi. All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip. Appl. Phys. Lett., 2010, 96: 101103.

[12] T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, M. Asghari. Silicon waveguide two-photon absorption detector at 1.5  mu m wavelength for autocorrelation measurements. Appl. Phys. Lett., 2002, 81: 1323-1325.

[13] H. Chen, A. Poon. Two-photon absorption photocurrent in p-i-n diode embedded silicon microdisk resonators. Appl. Phys. Lett., 2010, 96: 191106.

[14] M. Tanzid, A. Ahmadivand, R. Zhang, B. Cerjan, A. Sobhani, S. Yazdi, P. Nordlander, N. Halas. Combining plasmonic hot carrier generation with free carrier absorption for high-performance near-infrared silicon-based photodetection. ACS Photon., 2018, 5: 3472-3477.

[15] B. Desiatov, I. Goykhman, J. Shappir, U. Levy. Defect-assisted sub-bandgap avalanche photodetection in interleaved carrier-depletion silicon waveguide for telecom band. Appl. Phys. Lett., 2014, 104: 091105.

[16] D. A. Willis, V. Grosu. Microdroplet deposition by laser-induced forward transfer. Appl. Phys. Lett., 2005, 86: 244103.

[17] J. Doylend, P. Jessop, A. Knights. Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection. Opt. Express, 2010, 18: 14671-14678.

[18] H. W. Du, J. Yang, Y. H. Li, F. Xu, J. Xu, Z. Q. Ma. Preparation of ITO/SiOx/n-Si solar cells with non-decline potential field and hole tunneling by magnetron sputtering. Appl. Phys. Lett., 2015, 106: 093508.

[19] D. H. Shin, S. Kim, J. M. Kim, C. W. Jang, J. H. Kim, K. W. Lee, J. Kim, S. D. Oh, D. H. Lee, S. S. Kang, C. O. Kim, S. H. Choi, K. J. Kim. Graphene/Si-quantum-dot heterojunction diodes showing high photosensitivity compatible with quantum confinement effect. Adv. Mater., 2015, 27: 2614-2620.

[20] S. Y. Zhu, M. B. Yu, G. Q. Lo, D. L. Kwong. Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications. Appl. Phys. Lett., 2008, 92: 081103.

[21] M. Casalino, G. Coppola, M. Iodice, I. Rendina, L. Sirleto. Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550  nm. Opt. Express, 2012, 20: 12599-12609.

[22] M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffre, I. Rendina, G. Coppola. Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide. Appl. Phys. Lett., 2010, 96: 241112.

[23] SzeS., Physics of Semiconductor Devices, 2nd ed. (Wiley-Interscience, 1981).

[24] W. Diels, M. Steyaert, F. Tavernier. Schottky photodiodes in bulk CMOS for high-speed 1310/1550  nm optical receivers. IEEE J. Sel. Top. Quantum Electron., 2018, 24: 1-8.

[25] Z. Huang, Y. Mao, G. Lin, X. Yi, A. Chang, C. Li, S. Chen, W. Huang, J. Wang. Low dark current broadband 360–1650  nm ITO/Ag/n-Si Schottky photodetectors. Opt. Express, 2018, 26: 5827-5834.

[26] G.-J. Horng, C.-Y. Chang, C. Ho, C.-Y. Lee, T. Y. Huang. The effects of growth temperature on the microstructure and electrical barrier height in PtSi/p-Si(100) Schottky barrier detector. Thin Solid Films, 2000, 374: 80-84.

[27] P. Srivastava, M. Shin, K.-R. Lee, H. Mizuseki, S. Kim. The Schottky barrier modulation at PtSi/Si interface by strain and structural deformation. AIP Adv., 2015, 5: 087109.

[28] R. T. Tung. Recent advances in Schottky barrier concepts. Mater. Sci. Eng. R, 2001, 35: 1-138.

[29] M. Patel, H. S. Kim, H. H. Park, J. Kim. Silver nanowires-templated metal oxide for broadband Schottky photodetector. Appl. Phys. Lett., 2016, 108: 141904.

[30] J. Yun, M. Kumar, Y. Park, H.-S. Kim, J. Kim. High performing ITO/Ge heterojunction photodetector for broad wavelength detection. J. Mater. Sci. Mater. Electron., 2015, 26: 6099-6106.

[31] H.-S. Kim, M. D. Kumar, M. Patel, J. Kim. High-performing ITO/CuO/n-Si photodetector with ultrafast photoresponse. Sens. Actuators A, 2016, 252: 35-41.

[32] I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, U. Levy. Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. Nano Lett., 2011, 11: 2219-2224.

[33] I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, A. Ferrari. On-chip integrated, silicon-graphene plasmonic Schottky photodetector with high responsivity and avalanche photogain. Nano Lett., 2016, 16: 3005-3013.

[34] M. Alavirad, A. Olivieri, L. Roy, P. Berini. High-responsivity sub-bandgap hot-hole plasmonic Schottky detectors. Opt. Express, 2016, 24: 22544-22554.

[35] X. Xu, Z. Liu, Y. Wang. Step-directed deposition of Au nanostructures by electron beam evaporation. J. Rare Earth, 2004, 22: 141-144.

[36] S. K. Cheung, N. W. Cheung. Extraction of Schottky diode parameters from forward current‐voltage characteristics. Appl. Phys. Lett., 1986, 49: 85-87.

[37] W. Mönch. On metal-semiconductor surface barriers. Surf. Sci., 1970, 21: 443-446.

[38] Z. Huang, Y. Mao, A. Chang, H. Hong, C. Li, S. Chen, W. Huang, J. Wang. Low-dark-current, high-responsivity indium-doped tin oxide/Au/n-Ge Schottky photodetectors for broadband 800–1650  nm detection. Appl. Phys. Express, 2018, 11: 102203.

[39] M. Amirmazlaghani, F. Raissi, O. Habibpour, J. Vukusic, J. Stake. Graphene-Si Schottky IR detector. IEEE J. Quantum Electron., 2013, 49: 589-594.

[40] B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, U. Levy. Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime. Optica, 2015, 2: 335-338.

[41] S. Roy, K. Midya, S. Duttagupta, D. Ramakrishnan. Nano-scale NiSi and n-type silicon based Schottky barrier diode as a near infra-red detector for room temperature operation. J. Appl. Phys., 2014, 116: 124507.

[42] Y. Pei, R. Pei, L. Xiaoci, Y. Wang, L. Liu, H. Chen, J. Liang. CdS-nanowires flexible photo-detector with Ag-nanowires electrode based on non-transfer process. Sci. Rep., 2016, 6: 21551.

Xinxin Li, Zhen Deng, Jun Li, Yangfeng Li, Linbao Guo, Yang Jiang, Ziguang Ma, Lu Wang, Chunhua Du, Ying Wang, Qingbo Meng, Haiqiang Jia, Wenxin Wang, Wuming Liu, Hong Chen. Hybrid nano-scale Au with ITO structure for a high-performance near-infrared silicon-based photodetector with ultralow dark current[J]. Photonics Research, 2020, 8(11): 11001662.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!