激光生物学报, 2020, 29 (4): 318, 网络出版: 2020-12-30  

外源趋化剂对气单胞菌134的趋化性及其在水稻根际定殖的影响

Effects of Exogenous Chemotacticum on the Chemotactic Reaction and Rice Root Colonization of Aeromonas 134
作者单位
1 湖南省微生物研究院, 长沙 410009
2 湖南双红农科生态工程有限公司, 长沙 410205
3 益阳欣博农业发展有限公司, 益阳 413002
摘要
本研究从镉污染水稻根际土壤中分离、纯化出一株耐镉菌134, 并对该菌株的生理生态特征、16S rDNA等进行了系列分析, 结果表明该菌株为气单胞菌(Aeromonas sp.), 革兰氏阴性, 对镉离子的耐受质量浓度为75 mg/L。选取水稻根系的常见分泌物氨基酸和糖类作为外源趋化剂考察气单胞菌134对各组分的趋化性, 结果表明, 菌株134对组氨酸、丙氨酸、亮氨酸、葡萄糖及果糖均具有较强的正趋化性。类毛细血管定量试验进一步表明, 菌株134对不同浓度趋化剂的响应不同, 在亮氨酸80 μmol/L、组氨酸40 μmol/L、丙氨酸60 μmol/L、葡萄糖60 μmol/L及果糖100 μmol/L时, 菌株134的趋化性最强。综合考虑滴定分析试验和类毛细血管试验结果, 本文设计了水培试验来研究外源添加适宜浓度的组氨酸、亮氨酸、葡萄糖及D-果糖对菌株134在水稻根际定殖的影响。试验结果表明, 这4种外源趋化剂均能促进菌株134在水稻根际的定殖, 尤其是葡萄糖和D-果糖的处理, 其根际定殖细菌数量与对照相比差异极显著(P<0.01), 分别为对照组的3.48和3.87倍。
Abstract
In this study, a cadmium-resistant strain 134 was isolated and purified from the rice rhizosphere soil polluted by cadmium. The physiological and biochemical characteristics and 16S rDNA were studied. The results showed that strain 134 was a Gram-negative strain and can grow under the concentration of 75 mg/L cadmium. Analysis of 16S rDNA sequence of strain 134 showed it belongs to Aeromonas sp. Amino acids and sugars was chosen as the exogenous chemotacticum, which is the commonly exudates in rice root, and the chemotactic reaction of Aeromonas 134 with the exogenous chemotacticum was investigated. The results showed that Aeromonas 134 has strong positive chemotaxis to histidine, alanine, leucine, glucose and fructose. Capillary tube test suggested that the chemotaxis responses of strain 134 depended on the concentrations of the chemotacticum. In detail, strain 134 showed the strongest chemotactic reaction towards the 80 μmol/L leucine, 40 μmol/L histidine, 60 μmol/L alanine and glucose, 100 μmol/L fructose. On the basis of these, a solution culture experiment was designed to study the effects of exogenous addition of histidine, leucine, glucose and D-fructose on the colonization of strain 134 in the rice rhizosphere. All four exogenous chemotactic agents can promote the colonization of strain 134 in the rice rhizosphere, especially the treatment of glucose and D-fructose, the number of rhizosphere colonizing bacteria was significantly different from the control (P <0.01), and was 3.48 and 3.87 times of the control, respectively.
参考文献

[1] GRAY E J, SMITH D L. Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes[J]. Soil Biology & Biochemistry, 2005, 37(3): 395-412.

[2] BENEDUZI A, AMBROSINI A, PASSAGLIA L, et al. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents[J]. Genetics and Molecular Biology, 2012, 35(4): 1044-1051.

[3] BAIS H P, FALL R, VIVANCO J M, et al. Biocontrol of Baci- llus subtilis against infection of Arabidopsis roots by Pseudomo- nas syringae is facilitated by biofilm formation and surfactin production[J]. Plant Physiology, 2004, 134(1): 307-319.

[4] 范国昌. 微生物的趋性运动[J]. 生物学通报, 1999, 31(11): 20-21.

[5] TIMMUSK S, GRANTCHAROVA N, WAGNER E G, et al. Paenibacillus polymyxa invades plant roots and forms bio- films[J]. Applied and Environmental Microbiology, 2005, 71(11): 7292-7300.

[6] YUAN J, ZHANG N, HUANG Q W, et al. Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6[J]. Scientific Reports, 2015, 5: 13438-13447.

[7] JIN Y, ZHU H, LUO S, et al. Role of maize root exudates in promotion of colonization of Bacillus velezensis strain S3-1 in rhizosphere soil and root tissue[J]. Current Microbiology, 2019, 76(7): 855-862.

[8] YARYURA P M, LEON M, CORREA O S. et al. Assessment of the role of chemotaxis and biofilm formation as requirements for colonization of roots and seeds of soybean plants by Bacillus amyloliquefaciens BNM339[J]. Current Microbiology, 2008, 56(6): 625-632.

[9] SUO B, CHEN Q, WU W, et al. Chemotactic responses of phytophthora sojae zoospores to amino acids and sugars in root exudates[J]. Journal of General Plant Pahtology, 2016, 82(3): 142-148.

[10] WU K, YUAN S, XUN G, et al. Root exudates from two tobacco cultivars affect colonization of ralstonia solanacearum and the disease index[J]. European Journal of Plant Pathology, 2015, 141(4): 667-677.

[11] ZHANG F, MENG X, YANG X, et al. Quantification and role of organic acids in cucumber root exudates in Tricho- derma harzianum T-E5 colonization[J]. Plant Physiology and Biochemistry, 2014, 83: 250-257.

[12] TAN S, YANG C, MEI X, et al. The effect of organic acids from tomato root exudates on rhizosphere colonization of Bacillus amyloliquefaciens T-5[J]. Applied Soil Ecology, 2013, 64: 15-22.

[13] ANKATI S, RANI T S, PODILE A R, et al. Changes in root exudates and root proteins in groundnut-Pseudomonas sp. interaction contribute to root colonization by bacteria and defense response of the host[J]. Journal of Plant Growth Regulation, 2019, 38: 523-538.

[14] 沈怡斐, 鄂垚瑶, 阳芳, 等. 西瓜根系分泌物中氨基酸组分对多黏类芽孢杆菌SQR-21趋化性及根际定殖的影响[J]. 南京农业大学学报, 2017, 40(1): 101-108.

[15] 杨文弢, 周航, 邓贵友, 等. 组配改良剂对污染稻田中铅、镉和砷生物有效性的影响[J]. 环境科学学报, 2016, 36(1): 257-263.

[16] CHANEY R L, REEVES P G, PHILIP P G, et al. An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks[J]. Biometals, 2004, 17(5): 549-553.

[17] 东秀珠, 蔡妙英. 常见细菌鉴定手册[M]. 北京: 科学教育出版社, 2001: 56-57.

[18] 罗容珺, 王玉双, 李一路, 等.一株高耐镉硫酸盐还原菌的分离及脱硫性能研究[J]. 激光生物学报, 2016, 25(5): 437-442.

[19] 郝文雅, 沈其荣, 冉炜, 等. 西瓜和水稻根系分泌物中糖和氨基酸对西瓜枯萎病病原菌生长的影响[J]. 南京农业大学学报, 2011, 34(3): 77-82.

[20] GRIMM A C, HARWOOD C S. Chemotaxis of Pseudomonas spp. to the polyaromatic hydrocarbon naphthalene[J]. Applied and Environmental Microbiology, 1997, 63(10): 4111-4115.

[21] ADLER J. A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli[J]. Journal of General Microbiology, 1973, 74(1): 77-91.

[22] 冯海超. 根系分泌物组分与SQR9基因转录的相关性分析及其趋化与成膜的影响[D]. 南京: 南京农业大学, 2015.

[23] SUSANA B, GERMAN A, EVELIN C, et al. Root colonization and growth promotion of wheat and maize by Pseudomonas aurantiaca SR1[J]. Soil Biology and Biochemistry, 2009, 41(9): 1802-1806.

[24] CAO Y, ZHANG Z, LING N, et al. Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots[J]. Biology and Fertility of Soils, 2011, 47(5): 495-506.

[25] 杨姗姗, 孙柏欣, 王铁霖, 等. 西瓜嗜酸菌趋化性的初步研究[J]. 植物保护, 2016, 42(3): 161-164.

[26] THIMMARAJU R, KIRK J C, PAUL W P, et al. Root-secreted malic acid recruits beneficial soil bacteria[J]. Plant Physiology, 2008, 148(3): 1547-1556.

[27] SHAN S P, GUO Z H, LEI P, et al. Increased biomass and reduced tissue cadmium accumulation in rice via indigenous Citrobacter sp. XT1-2-2 and its mechanisms[J]. Science of the Total Environment, 2020, 708(1): 135224-135234.

王玉双, 李一路, 程伟, 张敏, 郭照辉, 雷平, 单世平, 付祖姣, 易红伟, 杨迪. 外源趋化剂对气单胞菌134的趋化性及其在水稻根际定殖的影响[J]. 激光生物学报, 2020, 29(4): 318. WANG Yushuang, LI Yilu, CHENG Wei, ZHANG Min, GUO Zhaohui, LEI Ping, SHAN Shiping, FU Zujiao, YI Hongwei, YANG Di. Effects of Exogenous Chemotacticum on the Chemotactic Reaction and Rice Root Colonization of Aeromonas 134[J]. Acta Laser Biology Sinica, 2020, 29(4): 318.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!