中国激光, 2015, 42 (4): 0406002, 网络出版: 2015-03-25  

掺C高阻GaN的MOCVD外延生长

Growth of the C-Doped High Resistance GaN by MOCVD
作者单位
1 北京工业大学电子信息与控制工程学院光电子技术省部共建教育部重点实验室, 北京 100124
2 中国科学院苏州纳米技术与纳米仿生研究所纳米器件与应用重点实验室, 江苏 苏州 215123
摘要
利用金属有机物化学气相沉积(MOCVD)技术在蓝宝石衬底上制备了GaN∶C 薄膜。为得到高阻(或半绝缘)的GaN 薄膜,研究了源(CCl4)流量和载气对MOCVD 外延GaN 薄膜电学性能的影响,发现CCl4流量和载气对实现高阻的GaN 影响很大。当GaN 缓冲层采用N2作为载气,CCl4的流量为0.016 μmol/min 时成功实现了GaN 的高阻生长,样品A2的方块电阻高达2.8×107 Ω/sq。经原子力显微镜(AFM)测试显示,样品的表面形貌较好,粗糙度均在0.3 nm 附近,说明C掺杂对外延GaN 薄膜的表面形貌没有大的影响。低温荧光光谱测试显示黄光峰与刃型位错有关。
Abstract
GaN∶C films are grown on sapphire by metal-organic chemical vapor deposition (MOCVD) with different carrier gas and different CCl4 source flux. To get a high resistance (or semi-insulating) GaN, the electrical properties of GaN films influenced by CCl4 flux and carrier gas are investigated. The results show that the CCl4 flux and carrier gas influence the growth of high resistance GaN greatly. The sample A2 gets the highest sheet resistance (2.8 × 107 Ω/sq) with the CCl4 flux of 0.016 mmol/min and N2 used as the carrier gas. The atomic force microscope (AFM) test show that the samples have a flat surface morphology, the roughness is around 0.3 nm. Meanwhile, it also show that the doping C has little influence on the surface morphology. The low temperature photoluminescence (LTPL) test show that the yellow luminescence is related with edge dislocation.
参考文献

[1] 陈翔, 邢艳辉, 韩军, 等. AlN 隔离层对MOCVD 制备的AlGaN/AlN/GaN HEMT 材料电学性质的影响[J]. 中国激光, 2013, 40(6): 0606005.

    Chen Xiang, Xing Yanhui, Han Jun, et al.. Influence of AlN interfacial layer on electrical properties of AlGaN/AlN/GaN HEMT materials grown by MOCVD[J]. Chinese J Lasers, 2013, 40(6): 0606005.

[2] 廉瑞凯, 李林, 范亚明, 等. 预辅Al及AlN 缓冲层厚度对GaN/Si(111)材料特性的影响[J]. 中国激光, 2013, 40(1): 0106001.

    Lian Ruikai, Li Lin, Fan Yaming, et al.. Effect of AlN buffer layer thickness and Al pre-treatment on properties of GaN/Si(111) epilayer[J]. Chinese J Lasers, 2013, 40(1): 0106001.

[3] 刘军林, 熊传兵, 程海英, 等. AlN 插入层对硅衬底GaN 薄膜生长的影响[J]. 光学学报, 2014, 34(2): 0231003.

    Liu Junlin, Xiong Chuanbing, Cheng Haiying, et al.. Effect of AlN interlayer on growth of GaN films on silicon substrate[J]. Acta Optica Sinica, 2014, 34(2): 0231003.

[4] 苏晨, 陈贵楚, 郑树文, 等. 蓝光发光二极管的响应特性[J]. 光学学报, 2013, 33(6): 0623002.

    Su Chen, Chen Guichu. Zheng Shuwen, et al.. Response characteristic of blue light-emitting diodes[J]. Acta Optica Sinica, 2013, 33(6): 0623002.

[5] Wang C M, Wang X L, Hu G X, et al.. The effect of AlN growth time on the electrical properties of Al0.38Ga0.62N/AlN/GaN HEMT structures[J]. Journal of Crystal Growth, 2006, 289(2): 415-418.

[6] Zhou S Z, Wang H Y, Lin Z T, et al.. Study of defects in LED epitaxial layers grown on the optimized hemispherical patterned sapphire substrates[J]. Jpn J Appl Phys, 2014, 53(2): 025503.

[7] Wright A F . Substitutional and interstitial carbon in wurtzite GaN[J]. J Appl Phys, 2002, 92(5): 2575-2585.

[8] Poblenz C, Waltereit P, Rajan S, et al.. Effect of carbon doping on buffer leakage in AlGaN /GaN high electron mobility transistors [J]. J Vac Sci Technol B, 2004, 22(3): 1071-1023.

[9] Gogova D, Rudko G Y, Siche D, et al.. A new approach to grow C-doped GaN thick epitaxial layers[J]. Phys Status Solidi C, 2011, 8(7-8): 2120-2122.

[10] Haffouz S, Tang H, Bardwell J A, et al.. AlGaN/GaN field effect transistors with C-doped GaN buffer layer as an electrical isolation template grown by molecular beam epitaxy[J]. Solid-State Electronics, 2005, 49(5): 802-807.

[11] Webb J B, Tang H, Rolfe S, et al.. Semi- insulating C- doped GaN and high- mobility AlGaN/GaN heterostrucrtures grown by ammonia molecular beam epitaxy[J]. Appl Phys Lett, 1999, 75(7): 953-955.

[12] 王昊. 高阻缓冲层与高迁移率GaN 基HEMT材料生长研究[D]. 西安: 西安电子科技大学, 2011. 40-43.

    Wang Hao. Study on GaN-Based HEMT Materials with High-Resistance Buffer Layer and High Mobility[D]. Xi′an: Xidian University, 2011. 40-43.

[13] Swager C H, Wright A F, Yu J, et al.. Role of carbon in GaN[J]. J Appl Phys, 2002, 92(11): 6553-6560.

[14] Lyons J L, Janotti A, Walle C G V D. Carbon impurities and the yellow luminescence in GaN[J]. Appl Phys Lett, 2010, 97(15): 152108.

[15] Zhang L M, Zhang X D, Liu Z M. A study of photoluminescence and micro-Raman scattering in C-implanted GaN[J]. Nuclear Techniques, 2010, 33(1): 15-19.

[16] 叶建东, 顾书林, 王立宗, 等. 掺碳氮化镓的光学性质[J]. 半导体学报, 2002, 23(7): 717-721.

    Ye Jiandong, Gu Shulin, Wang Lizong, et al.. Optical characteristics of C-doped GaN[J]. Journal of Semiconductors, 2002, 23(7): 717-721.

[17] 邓旭光, 韩军, 邢艳辉, 等. 高阻GaN 的MOCVD 外延生长[J]. 发光学报, 2013, 34(3): 352-355.

    Deng Xuguang, Han Jun, Xing Yanhui, et al.. Growth of high resistive GaN by MOCVD[J]. Chinese Journal of Luminesence, 2013, 34(3): 352-355.

[18] 黄愉. 生长条件对硅衬底GaN 薄膜中C、H、O 杂质浓度影响的研究[D]. 南昌: 南昌大学, 2012. 33-37.

    Huang Yu. The Investigation of the Effect of Growth Conditions on the Carbon, Hydrogen and Oxygen Impurities in the GaN Film Deposited on the Silicon Substrate[D]. Nanchang: Nanchang University, 2012. 33-37.

[19] 刘恩科, 朱秉升, 罗晋生. 半导体物理学[M]. 北京: 电子工业出版社, 2008. 115-116.

    Liu Enke, Zhu Bingsheng, Luo Jinsheng. Semiconductor Physics[M]. Beijing: Publishing House of Electronics Industry, 2008. 115-116.

[20] K Kuriyama, Y Mizuki, H Sano, et al.. Nuclear reaction analysis of carbon-doped GaN: The interstitial carbon as an origin of yellow luminescence[J]. Solid State Commun, 2005, 135(1-2): 99-102.

钟林健, 邢艳辉, 韩军, 王凯, 朱启发, 范亚明, 邓旭光, 张宝顺. 掺C高阻GaN的MOCVD外延生长[J]. 中国激光, 2015, 42(4): 0406002. Zhong Linjian, Xing Yanhui, Han Jun, Wang Kai, Zhu Qifa, Fan Yaming, Deng Xuguang, Zhang Baoshun. Growth of the C-Doped High Resistance GaN by MOCVD[J]. Chinese Journal of Lasers, 2015, 42(4): 0406002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!