作者单位
摘要
1 北京工业大学信息学部 光电子技术教育部重点实验室,北京 100124
2 长春理工大学 高功率半导体激光国家重点实验室,吉林 长春 130022
3 中国科学院 苏州纳米技术与纳米仿生研究所,江苏 苏州 215123
采用脉冲直流磁控溅射法在Si(100)衬底上制备了AlN/Mo/Sc0.2Al0.8N复合结构薄膜,在该结构上通过金属有机化学气相沉积(MOCVD)技术进行GaN薄膜的外延。使用原子力显微镜、高分辨X射线衍射、粉末X射线衍射、扫描电子显微镜和拉曼光谱研究了Mo插入层的厚度对Sc0.2Al0.8N缓冲层和GaN外延层晶体质量的影响,研究了Sc0.2Al0.8N缓冲层对Mo上生长的GaN外延层的影响。研究结果表明,Mo插入层的厚度是影响Sc0.2Al0.8N缓冲层和GaN外延层的重要因素,Sc0.2Al0.8N缓冲层对Mo上GaN晶体质量的提高具有重要意义。随Mo厚度的增加,Sc0.2Al0.8N缓冲层的表面粗糙度先减小后增大,GaN外延层的(002)面X射线衍射摇摆曲线半峰全宽先减小后增大。当Mo插入层厚度为400 nm时,GaN外延层的晶体质量最好,GaN(002)面的X射线衍射摇摆曲线半峰全宽为0.51°,由拉曼光谱计算得到的压应力483.09 MPa;直接在Mo上进行GaN的外延,GaN(002)面的X射线衍射摇摆曲线半峰全宽无法测得,说明在Mo上进行GaN的外延需要Sc0.2Al0.8N缓冲层。
GaN 金属有机化学气相沉积(MOCVD) ScAlN X射线衍射 GaN metal-organic chemical vapor deposition(MOCVD) ScAlN X-ray diffraction(XRD) 
发光学报
2023, 44(6): 1077
作者单位
摘要
1 北京工业大学 微电子学院 光电技术教育部重点实验室, 北京 100124
2 北京工业大学 微电子学院 光电技术教育部重点实验室, 北京 100124,
3 中国科学院苏州纳米技术与纳米仿生研究所 纳米加工平台, 江苏 苏州 215123
采用脉冲直流磁控溅射方法在Si(100)衬底上制备了ScAlN薄膜。以溅射的ScAlN作为缓冲层,在Si(100)衬底上用金属有机化学气相沉积(MOCVD)技术外延了GaN薄膜。使用高分辨X射线衍射、原子力显微镜和拉曼光谱研究了ScAlN缓冲层的厚度对ScAlN缓冲层和GaN外延层的影响。研究结果表明,ScAlN缓冲层的厚度是影响GaN薄膜晶体质量的重要因素。随着ScAlN厚度的增加,ScAlN的(002)面X射线衍射摇摆曲线半高宽持续减小,GaN的(002)面X射线衍射摇摆曲线半高宽先减小后增大。当ScAlN缓冲层厚度为500nm时,得到的GaN晶体质量最好,其中GaN(002)面的X射线衍射摇摆曲线半高宽为0.38°,由拉曼光谱计算得到的张应力为398.38MPa。
Si(100)衬底 氮化镓 磁控溅射 Si (100) substrate GaN ScAlN ScAlN magnetron sputtering 
半导体光电
2022, 43(3): 517
冯家驹 1,2,*范亚明 2,3房丹 1邓旭光 2[ ... ]张宝顺 2
作者单位
摘要
1 长春理工大学, 高功率半导体激光国家重点实验室, 物理学院, 长春 130022
2 中国科学院苏州纳米技术与纳米仿生研究所, 苏州 215123
3 江西省纳米技术研究院, 纳米器件与工艺研究部暨南昌市先进封测重点实验室, 南昌 330200
氮化镓(GaN)高电子迁移率晶体管(high electron mobility transistor, HEMT)以其击穿场强高、导通电阻低、转换效率高等特点引起科研人员的广泛关注并有望应用于电力电子系统中, 但其高功率密度和高频特性给封装技术带来极大挑战。传统硅基电力电子器件封装中寄生电感参数较大, 会引起开关振荡等问题, 使GaN的优良性能难以充分发挥; 另外, 封装的热管理能力决定了功率器件的可靠性, 若不能很好地解决器件的自热效应, 会导致其性能降低, 甚至芯片烧毁。本文在阐释传统封装技术应用于氮化镓功率电子器件时产生的开关震荡和热管理问题基础上, 详细综述了针对以上问题进行的GaN封装技术研究进展, 包括通过优化控制电路、减小电感Lg、提高电阻Rg抑制dv/dt、在栅电极上加入铁氧体磁环、优化PCB布局、提高磁通抵消量等方法解决寄生电感导致的开关振荡、高导热材料金刚石在器件热管理中的应用、器件封装结构改进, 以及其他散热技术等。
氮化镓 功率电子器件 封装技术 高电子迁移率晶体管 开关振荡 散热 金刚石 gallium nitride power electronic device packaging technology high electron mobility transistor switch oscillation heat dissipation diamond 
人工晶体学报
2022, 51(4): 730
作者单位
摘要
北京空间机电研究所,北京 100094
非均匀性校正精度是空间红外相机图像质量的一项重要指标,采用像元级双增益时间延迟积分(Time Delay and Integration,TDI)红外探测器得到的图像,其校正精度与图像数据重构之后的线性度直接相关。分析了红外TDI 探测器像元级双增益成像时探测器输出信号的特点,在此基础上提出基于辐射定标的方法,精确得到探测器每个像元高低增益输出值之间的等量关系,确定每个像元的数据重构系数,提高重构之后的全动态范围内探测器信号的线性度,从而提高红外图像非均匀性校正精度。实验室测试数据验证结果表明,基于辐射定标的高精度线性重构方法,将红外图像的非均匀性校正精度由4.1%提高到1.2%。
红外成像 像元级 双增益图像重构 infrared imaging, pixel-level, reconstruction of d 
红外技术
2020, 42(7): 670
作者单位
摘要
1 北京工业大学信息学部 光电子技术省部共建教育部重点实验室, 北京 100124
2 中国科学院苏州纳米技术与纳米仿生研究所 纳米器件与应用重点实验室, 江苏 苏州 215123
研究不同界面处理对AlGaN/GaN 金属-绝缘层-半导体(MIS)结构的高电子迁移率晶体管(HEMT)器件性能的影响。采用N2和NH3等离子体对器件界面预处理, 实验结果表明,N2等离子体预处理能够减小器件的电流崩塌, 通过对N2等离子体预处理的时间优化, 发现预处理时间10 min能够较好地提高器件的动态特性, 30 min时动态性能下降。进一步引入AlN作为栅介质插入层并经过高温热退火后能够有效提高器件的动态性能, 将器件的阈值回滞从411 mV减小至111 mV, 动态测试表明, 在900 V关态应力下, 器件的电流崩塌因子从42.04减小至4.76。
电流崩塌 AlN栅介质插入层 界面处理 AlGaN/GaN高电子迁移率晶体管 current collapse AlN gate dielectric insertion layer interface treatment AlGaN/GaN high electron mobility transistors 
发光学报
2019, 40(7): 915
作者单位
摘要
1 北京工业大学微电子学院 光电技术教育部重点实验室, 北京 100124
2 中国科学院苏州纳米技术与纳米仿生研究所 纳米器件与应用重点实验室, 江苏 苏州 215123
采用金属有机化学气相沉积(MOCVD)技术在Si(111)衬底上外延GaN薄膜, 对高温AlN(HT-AlN)缓冲层在小范围内低生长压力(6.7~16.6 kPa)条件下对GaN薄膜特性的影响进行了研究。研究结果表明GaN外延层的表面形貌、结构和光学性质对HT-AlN缓冲层的生长压力有很强的的依赖关系。增加HT-AlN缓冲层的生长压力, GaN薄膜的光学和形貌特性均有明显改善, 当HT-AlN缓冲层的生长压力为13.3 kPa时, 得到无裂纹的GaN薄膜, 其(002)和(102)面的X射线衍射峰值半高宽分别为735 arcsec和778 arcsec,由拉曼光谱计算得到的张应力为0.437 GPa, 原子力显微镜(AFM)观测到表面粗糙度为1.57 nm。
高温AlN缓冲层 氮化镓 金属有机化学气相沉积 X射线衍射 拉曼光谱 HT-AlN buffer GaN MOCVD X-ray diffraction Raman spectroscopy 
发光学报
2018, 39(9): 1285
作者单位
摘要
1 北京工业大学电子信息与控制工程学院光电子技术省部共建教育部重点实验室, 北京 100124
2 中国科学院苏州纳米技术与纳米仿生研究所纳米器件与应用重点实验室, 江苏 苏州 215123
利用金属有机物化学气相沉积(MOCVD)技术在蓝宝石衬底上制备了GaN∶C 薄膜。为得到高阻(或半绝缘)的GaN 薄膜,研究了源(CCl4)流量和载气对MOCVD 外延GaN 薄膜电学性能的影响,发现CCl4流量和载气对实现高阻的GaN 影响很大。当GaN 缓冲层采用N2作为载气,CCl4的流量为0.016 μmol/min 时成功实现了GaN 的高阻生长,样品A2的方块电阻高达2.8×107 Ω/sq。经原子力显微镜(AFM)测试显示,样品的表面形貌较好,粗糙度均在0.3 nm 附近,说明C掺杂对外延GaN 薄膜的表面形貌没有大的影响。低温荧光光谱测试显示黄光峰与刃型位错有关。
材料 C掺杂 高阻 半绝缘 金属有机物化学气相沉积 GaN 薄膜 
中国激光
2015, 42(4): 0406002
作者单位
摘要
1 北京工业大学电子信息与控制工程学院 光电子技术省部共建教育部重点实验室, 北京 100124
2 中国科学院苏州纳米技术与纳米仿生研究所, 江苏 苏州 215123
利用金属有机化学气相沉积(MOCVD)设备, 在蓝宝石(0001)面上外延不同生长时间AlN隔离层的AlxGa1-xN/AlN/GaN结构的高电子迁移率的晶体管(HEMT), 研究了AlN隔离层厚度对HEMT材料电学性能的影响。研究发现采用脉冲法外延(PALE)技术生长AlN隔离层的时间为12 s(1 nm左右)时, HEMT材料的方块电阻最小,电子迁移率为1 500 cm2·V-1·s-1, 二维电子气(2DEG)浓度为1.16×1013 cm-2。AFM测试结果表明, 一定厚度范围内的AlN隔离层并不会对材料的表面形貌产生重大的影响。HRXRD测试结果表明, AlGaN/AlN/GaN具有好的异质结界面。
AlN厚度 电学性能 AlN thickness PALE PALE MOCVD MOCVD HEMT HEMT electrical properties 
发光学报
2014, 35(7): 830
作者单位
摘要
1 北京工业大学,北京市光电子技术实验室,北京100124
2 中国科学院苏州纳米技术与纳米仿生研究所,江苏 苏州215123
用等离子体增强化学气相淀积制备了Ge掺杂SiO2薄膜,并对薄膜进行了不同温度的退火处理。采用棱镜耦合仪、原子力显微镜和傅里叶变换红外光谱分析技术研究了不同退火温度对Ge掺杂SiO2薄膜性质的影响。通过1100℃退火处理后,正的折射率变化量和负的体积变化量随着GeH4流量增加而增大,Ge-O-Ge键增多;而通过900℃退火处理后,折射率没有随着GeH4流量增加而增大;薄膜的表面粗糙度随着退火温度升高而降低。研究结果表明,SiO2薄膜中Ge掺杂过量,其折射率反常下降;通过1100℃退火处理后,折射率随着GeH4流量增加而增大,折射率的增大主要是由于薄膜密实化和Ge-O-Ge键的形成。
等离子体增强化学气相淀积 折射率 退火 plasma enhanced chemical vapor deposition refractive index thermal annealing 
半导体光电
2013, 34(3): 445
作者单位
摘要
1 北京工业大学 光电子技术省部共建教育部重点实验室, 北京100124
2 中国科学院苏州纳米技术与纳米仿生研究所 纳米器件与应用重点实验室, 江苏 苏州215123
在Si(111)衬底上用金属有机化学气相沉积(MOCVD)设备生长了AlN和GaN薄膜。采用高分辨X射线衍射、椭圆偏振光谱仪和原子力显微镜研究了AlN缓冲层生长时的载气(H2)流量变化对GaN外延层的影响。椭圆偏振仪测试表明: 相同生长时间内AlN的厚度随着H2流量的增加而增加, 即H2流量增加会导致AlN生长速率的提高。原子力显微镜测试表明: 随着H2流量的增加, AlN表面粗糙度也呈上升趋势。XRD测试表明: 随着AlN生长时的H2流量的增加, GaN的(0002)和(1012)峰值半宽增大, 即螺型穿透位错密度和刃型穿透位错密度增加。可能是由于AlN缓冲层的表面形貌较差, 导致GaN的晶体质量有所下降。实验结果表明: 采用较低的H2流量生长AlN缓冲层可以控制AlN的生长速率, 在一定程度上有助于提高GaN的晶体质量。
氮化镓(GaN) AlN缓冲层 H2载气 Si衬底 金属有机化学气相沉积 GaN AlN buffer H2 carrier gas Si substrate MOCVD 
发光学报
2013, 34(6): 776

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!