红外与毫米波学报, 2014, 33 (1): 62, 网络出版: 2014-03-14   

太赫兹折叠波导慢波结构的设计与微加工

Design and microfabrication of folded waveguide circuit for THz TWT
作者单位
1 中国工程物理研究院,电子工程研究所,四川 绵阳621900
2 中国工程物理研究院,太赫兹研究中心,四川 绵阳621900
摘要
从行波管工作的物理特性提出了一种获得折叠波导慢波结构参数的简单方法,给定工作频率和电压,能够获得折叠波导慢波结构的初始参数.设计了D波段的折叠波导结构来验证该方法,对其冷测特性如色散、耦合阻抗进行了分析.仿真结果表明,设计的折叠波导慢波结构在中心频率处具有较平缓的色散关系,在中心频率处耦合阻抗为3.5欧姆.在电子注电压为20.6kV,电流为15mA时,27mm(50个周期)的折叠波导慢波结构在220GHz具有13.5dB的增益,3dB带宽为11GHz (213~224GHz).同时讨论了折叠波导慢波结构的微加工工艺,并通过UV-LIGA工艺获得了实验样品.
Abstract
A simple method based on the physical characteristics to get the main parameters of folded waveguide traveling wave tube (TWT) circuit is presented. Providing the operating frequency and beam voltage, the authors can obtain the initial structural parameters of the FWTWT. A D-band folded waveguide circuit was used to verify this method. The cold characteristics including dispersion relation and interaction impedance were analyzed. The simulation results show good agreement with their theory formula analysis. The folded waveguide slow-wave structure has flat dispersion relation, fairly high interaction impedance about 3.5 ohms at the center frequency of 220GHz. The large signal performance of 27mm (50 periods) folded waveguide circuit was predicted. Simulations show the nonlinear gain is 13.5dB at 220GHz where beam voltage and current are 20.6kV and 15mA, respectively. A saturated 3dB bandwidth is 11GHz (213~224GHz). The Microfabrication process to produce the folded waveguide circuits was discussed. The first example of the folded waveguide circuit was fabricated by UV-LIGA process.
参考文献

[1] Booske J H, Kory C L, Gallagher D, et al. Terahertz-regime, micro-VEDs: evaluation of micromachined TWT conceptual designs[C]. IEEE PPPS2001, USA: Las Vegas, 2001: 1722.

[2] Ives R L. Microfabrication of high frequency vacuum electron devices[J]. IEEE Trans. Plasma Sci, 2004, 32(3): 12771291.

[3] Han S T, Jeon S G, Shin Y M, et al. Experimental investigations on miniaturized high-frequency vacuum electron devices[J]. IEEE Trans. Plasma Sci, 2005, 33(2): 679684.

[4] Song J J, Decarlo F, Kang Y W, et al. MM-wave cavity/klystron developments using deep x-ray lithography at the advanced photon source[C]. APAC1998, Japan: Tsukuba, 1998: 298300.

[5] Han S T, So J K, Jang K H, et al. Investigations on a microfabricated FWTWT oscillator[J]. IEEE Trans. Electron Devices, 2004, 52(5): 702708.

[6] Kory C L, Dayton J A, Mearini G T, et al. 95GHz helical TWT design[C]. IVEC2008, USA: Monterey, 2008: 125126.

[7] Shin Y M, Park G S, Scheitrum G P, et al. Novel coupled-cavity TWT structure using two step LIGA fabrication[J]. IEEE Trans. Plasma Sci, 2003, 31(6): 13171324.

[8] Feng Jin-Jun, Hu Yin-Fu, Cai Jun, et al. Progress of W-band 10W CW TWT[C]. IVEC2010, USA: Monterey, 2010: 501502.

[9] Tucek J, Basten M, Gallagher D, et al. 220GHz folded waveguide circuits for high power amplifiers[C]. IVEC2009, Italy: Rome, 2009: 108109.

[10] He Jun, Wei Yan-Yu, Gong Yu-Bin, et al. Linear analysis of a W band groove-loaded folded waveguide traveling wave tube[J]. PHYSICS OF PLASMAS, 2010, 17(11): 113305.

[11] He Jun, Wei Yan-Yu, Gong Yu-Bin, et al. Investigation on a W band ridge-loaded folded waveguide TWT[J].IEEE Trans. Plasma Sci, 2011, 39(8): 16601664.

[12] Gong Yu-Bin, Yin Hai-Rong, Yue Ling-Na, et al. A 140-GHz two-beam overmoded folded-waveguide Traveling-Wave Tube[J]. IEEE Trans. Plasma Sci, 2011, 39(3): 847851.

[13] Liu Sheng-Gang, Li Hong-Fu, Wang Wen-Xiang, et al. Introduction to microwave electronics[M]. Beijing: National defense industry press, 1985: 413415.

[14] Han S T, Kim J I, Park G S. Design of a folded waveguide traveling-wave tube[J]. Microw Opt Tech Lett, 2003, 38(2), 161165.

[15] Dohler G, Gagne D, Gallagher D, et al. Serpentine waveguide TWT[C]. IEDM1987, USA: Washington, 1987: 485488.

[16] Booske J H, Converse M C, Kory C L, et al. Accurate parametric modeling of folded waveguide circuits for millimeter-wave traveling wave tubes[J]. IEEE Trans. Electron Devices, 2005, 52(5): 685694.

[17] Shin Y M, So J K, Han S T, et al. Microfabrication of millimeter wave vacuum electron devices by two-step deep-etch x-ray lithography[J]. Appl. Phys. Lett, 2006, 88: 1619.

[18] Tucek J, Gallagher D, Kreischer K. A Compact, high power, 0.65 THz source[C]. IVEC2008, USA: Monterey, 2008: 1617.

王亚军, 陈樟, 程焰林, 施志贵. 太赫兹折叠波导慢波结构的设计与微加工[J]. 红外与毫米波学报, 2014, 33(1): 62. WANG Ya-Jun, CHEN Zhang, CHENG Yan-Lin, SHI Zhi-Gui. Design and microfabrication of folded waveguide circuit for THz TWT[J]. Journal of Infrared and Millimeter Waves, 2014, 33(1): 62.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!