中国激光, 2012, 39 (2): 0202005, 网络出版: 2012-01-06   

基于光纤环形镜的掺磷光纤拉曼激光器

Phosphosilicate Fiber Raman Laser Based on Fiber Loop Mirror
作者单位
厦门大学电子工程系, 厦门 福建 361005
摘要
报道了一种由宽带光纤环形镜(FLM)作为腔反射元件的法布里珀罗腔掺磷光纤拉曼激光器(RFL),并与使用窄带光纤布拉格光栅(FBG)作为高反镜的腔结构进行了对比研究。研究结果表明,使用宽带FLM替代FBG仍可实现掺磷RFL的窄带激光输出,并且可有效避免拉曼激光从高反镜端的泄漏。在相同的输出镜反射率情况下,使用FLM作为高反镜比使用FBG作为高反镜具有更低的振荡阈值和更高的光光转换效率。当抽运功率为9.45 W时,拉曼激光(1.24 μm)输出功率为4.31 W,激光器斜效率和光光转换效率分别为57.9%和45.6%。
Abstract
A phosphosilicate Raman fiber laser (RFL) with Fabry-Perot cavity consisting of a pair of wide-band fiber loop mirrors (FLM) is proposed. A narrow-band fiber Bragg gratings (FBG) is used as a highly-reflective mirror in the same experimental configuration. The results show that the adoption of phosphosilicate RFL with FLM as a highly-reflective mirror instead of FBG can obtain laser output with narrow bandwidth and decrease the optical leakage from the highly-reflective mirror effectively. With the same output mirror, the laser using FLM as its highly-reflective mirror demonstrates a lower threshold and higher conversion efficiency than the one using FBG as the highly-reflective mirror. The output power of the laser at 1.24 μm is up to 4.31 W while the incident pump power is 9.45 W, the slope efficiency is 57.9% and optical-optical conversion efficiency is 45.6%.
参考文献

[1] E. M. Dianov, M. V. Grekov, I. A. Bufetov et al.. CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphisilicate fibre[J]. Electron. Lett., 1997, 33(18): 1542~1544

[2] E. M. Dianov, I. A. Bufetov, M. M. Bubnov et al.. Three-cascaded 1407-nm Raman laser based on phosphorus-doped silica fiber[J]. Opt. Lett., 2000, 25(6): 402~404

[3] 秦祖军, 周晓军, 伍浩成. 1550 nm波段多波长拉曼光纤激光器实验研究[J]. 光学学报, 2010, 30(s1): s100207

    Qin Zujun, Zhou Xiaojun, Wu Haocheng. Experimental investigation on multiwavelength Raman fiber laser at 1550 nm[J]. Acta Optica Sinica, 2010, 30(s1): s100207

[4] E. Bélanger, M. Bernier, D. Faucher et al.. High-power and widely tunable all-fiber Raman laser[J]. J. Lightwave Technol., 2008, 26(12): 1696~1701

[5] P. C. Peng, H. Y. Tseng, S. Chi. Long-distance FBG sensor system using a linear-cavity fiber Raman laser scheme[J]. IEEE Photon. Technol. Lett., 2004, 16(2): 575~577

[6] F. Anquez, E. Courtade, A. Sivery et al.. A high-power tunable Raman fiber ring laser for the investigation of singlet oxygen production from direct laser excitation around 1270 nm[J]. Opt. Express, 2010, 18(22): 22928~22936

[7] M. Feng, Y. Li, J. Li et al.. High power one- and two-order cascades Raman lasers bsaed on home-made phosphosilicate fibre[J]. Chin. Phys. Lett., 2005, 22(5): 1137~1139

[8] 杨晓涛, 王英, 张敏明. 掺磷光纤拉曼激光器数值模型和实验[J]. 激光与光电子学进展, 2004, 41(5): 45~47

    Yang Xiaotao, Wang Ying, Zhang Minming. Numerical modeling and experiment of P-doped Raman fiber lasers[J]. Laser & Optoelectronics Progress, 2004, 41(5): 45~47

[9] S. A. Babin, D. V. Churkin, A. E. Ismagulov et al.. Spectral broadending in Raman fiber lasers[J]. Opt. Lett., 2006, 31(20): 3007~3009

[10] S. A. Babin, D. V. Churkin, A. E. Ismagulov et al.. Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser[J]. J. Opt. Soc. Am. B, 2007, 24(8): 1729~1738

[11] 江微微, 赵瑞峰, 卫延 等. 基于熔融拉锥光纤布拉格光栅的光谱特性[J]. 中国激光, 2010, 37(10): 2565~2569

    Jiang Weiwei, Zhao Ruifeng, Wei Yan et al.. Spectral characteristics of Bragg fiber grating based on fused taper fiber[J]. Chinese J. Lasers, 2010, 37(10): 2565~2569

[12] Y. Feng, L. R. Taylor, D. Bonaccini Calia. 150 W highly-efficient Raman fiber laser[J]. Opt. Express, 2009, 17(26): 23678~23683

[13] I. A. Bufetov, M. M. Bubnov, Y. V. Larionov et al.. Highly efficient one- and two-cascade Raman lasers based on phosphosilicate fibers[J]. Laser Physics, 2003, 13(2): 234~239

[14] 黄朝红, 魏栋, 林佳丽 等. 高功率1.48 μm国产掺磷光纤级联拉曼激光器[J]. 中国激光, 2008, 35(s2): 33~36

    Huang Chaohong, Wei Dong, Lin Jiali et al.. High power 1.48 μm home-made phosphosilicate fiber cascaded Raman laser[J]. Chinese J. Lasers, 2008, 35(s2): 33~36

[15] R. Vallée, E. Bélanger, B. Déry et al.. Highly efficient and high-kpower Raman fiber laser based on broadband chirped fiber Bragg gratings[J]. J. Lightwave Technol., 2006, 24(12): 5039~5043

[16] 范弘建, 张伟刚, 颜爱东 等. 非均匀超长周期光纤光栅的频谱分析[J]. 中国激光, 2010, 37(6): 1547~1552

    Fan Hongjian, Zhang Weigang, Yan Aidong et al.. Spectrum analysis for non-uniform ultra-long-period fiber grating[J]. Chinese J. Lasers, 2010, 37(6): 1547~1552

[17] N. J. Doran, D. Wood. Nonlinear-optical loop mirror[J]. Opt. Lett., 1988, 13(1): 56~58

[18] David B. Mortmore. Fiber loop reflector[J]. J. Lighewave Technol., 1988, 6(7): 1217~1224

刘鹏, 黄朝红, 漆伟, 罗正钱, 许惠英, 蔡志平. 基于光纤环形镜的掺磷光纤拉曼激光器[J]. 中国激光, 2012, 39(2): 0202005. Liu Peng, Huang Chaohong, Qi Wei, Luo Zhengqian, Xu Huiying, Cai Zhiping. Phosphosilicate Fiber Raman Laser Based on Fiber Loop Mirror[J]. Chinese Journal of Lasers, 2012, 39(2): 0202005.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!