激光与光电子学进展, 2017, 54 (11): 111103, 网络出版: 2017-11-17   

基于CCD图像传感器的压缩成像方法 下载: 626次

Compressive Imaging Method Based on CCD Image Sensor
作者单位
天津大学电气自动化与信息工程学院, 天津 300072
摘要
压缩感知理论将信号采样和压缩同时进行,且采样频率远低于奈奎斯特频率,为低分辨率采样高分辨率成像提供了可能。为此,提出一种基于CCD图像传感器的压缩成像方法,利用CCD图像传感器模拟像素值串行输出不可重复使用的特点,对图像进行单次测量,构造半循环半随机测量矩阵对CCD图像传感器输出的模拟值进行压缩测量,基于增广拉格朗日法和交替方向法的最小全变分算法(TVAL3)算法解压缩重构图像。该成像方法测量矩阵的稀疏性较强,能较好地恢复原始图像,同时模拟/数字负担及量化编码的复杂度大大降低,成像系统结构简单,实用性强。仿真结果表明,所提成像算法重构的图像主客观质量较好。
Abstract
The signal acquisition and compression can be made simultaneously and the signal sampling rate is much lower than the Nyquist frequency in the compressive sensing theory, which provides the possibility for high resolution imaging from low resolution sampling data. A compressive imaging method based on CCD image sensor is proposed. By using the unrepeatable characteristic of the serial output analog pixel value of the CCD image sensor in a single measurement, the semi cyclic and semi random measurement matrices are constructed to compress and measure the analog values outputted by CCD image sensor. Then the total variational algorithm based on augmented Lagrangian (TVAL3) arithmetic is used to decompress and reconstruct the image. This imaging method is good at measuring the sparsity of the matrices, and the original images can be well recovered. The proposed method can greatly alleviate the burden of analog digital and the complexity of quantization coding, which also has a simple structure and strong practicability. Simulation results show that the reconstructed image has better subjective and objective quality with the proposed method.
参考文献

[1] Li Y, Li Q, Hu J, et al. Compressive sensing algorithm for 2D reconstruction of THz digital holography[J]. Chinese Optics Letters, 2015, 13(S1): S11101.

[2] Sha M, Liu J, Li X, et al. Holographic display based on compressive sensing[J]. Chinese Optics Letters, 2014, 12(6): 060023.

[3] Cao X, Sang X, Chen Z, et al. Fresnel hologram reconstruction of complex three-dimensional object based on compressive sensing[J]. Chinese Optics Letters, 2014, 12(8): 080901.

[4] 汪琪, 马灵玲, 唐伶俐, 等. 基于光谱稀疏模型的高光压缩感知重构[J]. 红外与毫米波学报, 2016, 35(6): 723-730.

    Wang Qi, Ma Lingling, Tang Lingli, et al. Hyperspectral compressive sensing reconstruction based on spectral sparse model[J]. Journal of Infrared Millimeter Waves, 2016, 35(6): 723-730.

[5] 唐超影, 陈跃庭, 李奇, 等. 基于信号相关性的自适应时域视频压缩感知重建方法[J]. 光学学报, 2016, 36(10): 1010001.

    Tang Chaoying, Chen Yueting, Li Qi, et al. Adaptive temporal compressive sensing for video based on signal correlation[J]. Acta Optica Sinica, 2016, 36(10): 1010001.

[6] 汪磊, 马彦鹏, 姚波, 等. 基于梯度投影算法重构的压缩成像实验及质量评价[J].激光与光电子学进展, 2016, 53(12): 121101.

    Wang Lei, Ma Yanpeng, Yao Bo, et al. Compressed imaging experiments based on gradient projection algorithm reconstruction and image quality assessment[J]. Laser &Optoelectronics Progress, 2016, 53(12): 121101.

[7] 欧阳瑶, 陈靖. 并行可见光焦平面压缩成像系统[J]. 激光与光电子学进展, 2017, 54(2): 021102.

    Ouyang Yao, Chen Jing. Compressive imaging system based on parallel visible light focal plane[J]. Laser &Optoelectronics Progress, 2017, 54(2): 021102.

[8] 白音布和, 吕晓东, 李根全, 等. 基于压缩感知的光学干涉双灰度图像加密系统[J]. 激光与光电子学进展, 2016, 53(4): 041002.

    Bai Yinbuhe, Lü Xiaodong, Li Genquan, et al. Optical interference double gray image encryption system based on compressive sensing[J]. Laser & Optoelectronics Progress, 2016, 53(4): 041002.

[9] 翁嘉文, 秦怡, 杨初平, 等. 单幅弱相干光数字全息图的压缩感知重建[J]. 激光与光电子学进展, 2015, 52(10): 100901.

    Weng Jiawen, Qin Yi, Yang Chuping, et al. Reconstruction of single low-coherence digital hologram by compressive sensing[J]. Laser &Optoelectronics Progress, 2015, 52(10): 100901.

[10] Candes E J, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies [J]. IEEE Transactions on information theory, 2006, 52(12): 5406-5425.

[11] Duarte M F, Davenport M A, Takbar D, et al. Single-pixel imaging via compressive sampling[C]. IEEE Signal processing magazine, 2008, 25(2): 83-91.

[12] Robucci R, Chiu L K, Gray J, et al. Compressive sensing on a CMOS separable transform image sensor[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, 2010: 5125-5128.

[13] Jacques L, Vandergheynst P, Bibet A, et al. CMOS compressed imaging by random convolution[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, 2009: 1113-1116.

[14] Pitsianis N P, Brady D J, Portnoy A, et al. Compressive imaging sensors[C]. SPIE, 2006, 6232: 62320A.

[15] Candes E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure & Applied Mathematics, 2005, 59(8): 1207-1223.

[16] Lu W, Kpalma K, Ronsin J. Sparse binary matrices of LDPC codes for compressed sensing[C]. Data Compression Conference, 2012, 58(5): 405-415.

[17] 田沛沛. 基于压缩感知的测量矩阵设计及在成像系统中应用[D]. 天津: 天津大学, 2014.

    Tian Peipei. Design of measurement matrices based on compressed sensing and the applications of the matrices in image system[D]. Tianjin: Tianjin University, 2014.

[18] Li C. An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing[D]. Houston: Rice University, 2009.

张淑芳, 朱彬华, 李瑞. 基于CCD图像传感器的压缩成像方法[J]. 激光与光电子学进展, 2017, 54(11): 111103. Zhang Shufang, Zhu Binhua, Li Rui. Compressive Imaging Method Based on CCD Image Sensor[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111103.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!