光学学报, 2010, 30 (9): 2714, 网络出版: 2014-05-15   

基于带隙可调的二维光子晶体全光开关

An AllOptical Switch Based on the Tunable Bandgap of a TwoDimensional Photonic Crystal
作者单位
华南师范大学信息光电子科技学院光子信息技术广东省高校重点实验室, 广东 广州 510006
摘要
提出了一种新颖的制作二维光子晶体全光开关的方法。光子晶体波导通过往二维六角形分布的光子晶体的空气孔中填充偶氮苯掺杂液晶得到。数值模拟结果表明,通过外界光场控制空气孔中所填充的向列液晶的方向可以对光子晶体的方向能隙进行调节,这种可调节性可用于制作全光开关。与电场调制方法相比,该光控液晶取向技术具有响应速度快、结构简单的优点。
Abstract
A novel method to fabricate twodimensional photonic crystal alloptical switch is reported. Photonic crystal waveguides can be obtained by infiltration of azobenzenedoped liquid crystals into air holes in twodimensional photonic crystals composed of hexagonal lattices of air cylinders. Numerical simulations show that the photonic crystal band gaps are modulated by nematic liquid crystals infiltrated in the air holes. Then the band gap can be controlled easily under the influence of the external optic field. So the results can serve as an alloptical switch. Compared with the tunable method through an external electric field, the technique has the advantages of fast response and low cost.
参考文献

[1] M. Scalora, J. P. Dowling, C. M. Bowden et al.. Optical limiting and switching of ultra short pulses in nonlinear photonic band gap materials[J]. Phys. Rev. Lett., 1994, 73(10): 1368~1371

[2] 龚旗煌,胡晓永. 超快速光子晶体全光开关研究[J]. 北京大学学报(自然科学版), 2006, 42(1): 11~17

    Gong Qihuang, Hu Xiaoyong. Ultrafast photonic crystal alloptical switching[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2006, 42(1): 11~17

[3] A. Hache, M. Bourgeois. Ultrafast alloptical switching in a siliconbased photonic crystal[J]. Appl. Phys. Lett., 2000, 77(25): 4089~4091

[4] A. V. Scherbakov, A. V. Akimov, V. G. Golubev et al.. Optically induced Bragg switching in opalVO2 photonic crystals[J]. Phys. E: LowDimensional Systems and Nanostructures, 2003, 17: 429~430

[5] D. A. Mazurenko, A. V. Akimo, A. B. Pevtsov et al.. Ultrafast alloptical switching in a threedimensional photonic crystal[J]. J. Lumin., 2004, 108(14): 163~166

[6] S. W. Leonard, H. M. Van Driel, J. Schilling et al.. Ultrafast bandedge tuning of a twodimensional silicon photonic crystal via freecarrier injection[J]. Phys. Rev. B, 2002, 66(16): 161102~161105

[7] Y. H. Liu, X. Y. Hu, D. X. Zhang et al.. Subpicosecond optical switching in polystyrene opal[J]. Appl. Phys. Lett., 2005, 86(15): 151102~151104

[8] C. E. Reese, A. V. Mikhonin, M. Kamenjicki et al.. Nanogel nanosecond photonic crystal optical switching[J]. J. Am. Chem. Soc., 2004, 126(5): 1493~1496

[9] T. Tanabe, M. Notomi, S. Mitsugi et al.. Alloptical switches on a silicon chip realized using photonic crystal nanocavities[J]. Appl. Phys. Lett., 2005, 87(15): 151112~151114

[10] A. D. Bristow, J. P. R. Wells, W. H. Fan et al.. Ultrafast nonlinear response of AlGaAs twodemensional photonic crystal waveguides[J]. Appl. Phys. Lett., 2003, 83(5): 851~853

[11] M. Shimizu, T. Ishihara. Subpicosecond transmission change in semiconductor embedded photonic crystal slab: toward ultrafast optical switching[J]. Appl. Phys. Lett., 2002, 80(16): 2836~2838

[12] Tijmen G. Euser, Adriaan J. Molenaar. Alloptical octavebroad ultrafast switching of Si woodpile photonic band gap crystals[J]. Phys. Rev. B, 2008, 77(11): 115214~115219

[13] Kyle Preston, Po Dong, Bradley Schmidt et al.. Highspeed alloptical modulation using polycrystalline silicon microring resonators[J]. Appl. Phys. Lett., 2008, 92(15): 151104~151106

[14] Chad Husko, Alfredo De Rossi, Sylvain Combrié et al.. Ultrafast alloptical modulation in GaAs photonic crystal cavities[J]. Appl. Phys. Lett., 2009, 94(2): 021111~021113

[15] Schadt Martin, Schmitt Klaus, Kozinkov Vladimir et al.. Surfaceinduced parallel alignment of liquid crystals by linearly polymerized photopolymers[J]. Jpn. J. Appl. Phys., 1992, 31(7): 2155~2164

[16] 王坚,项颖,林子扬 等. 双偶氮苯掺杂液晶在光场下的Freedericksz转变[J]. 科学通报, 2000, 45(24): 2610~2613

    Wang Jian, Xiang Ying, Lin Ziyang et al.. Lightfieldinduced Freedericksz transition of liquid crystal doped with doubleazo benzene[J]. Chinese Science Bulletin, 2000, 45(24): 2610~2613

[17] I. C. Khoo, R. R. Michael, G. M. Finn. Selfphase modulation and optical limiting of a lowpower CO2 laser with a nematic liquidcrystal film[J]. Appl. Phys. Lett., 1988, 52(25): 2108~2110

[18] I. Janassy, A. D. Lloyd. Lowpower optical reorientationin dyed nematics[J]. Mol. Cryst. Liq. Cryst., 1991, 203(5): 77~84

[19] I. Janossy. Molecular interpretation of the absorptioninduced optical reorientation of nematic liquid crystals[J]. Phys. Rev. E, 1994, 49(4): 2957~2963

[20] Tsutsumi Osamu, Ikeda Tomiki. Photochemical modulation of alignment of liquid crystals and photonic applications[J]. Current Opinion in Solid State & Materials Science, 2002, 6(6): 563~568

[21] 张俊瑞, 刘绍锦, 凌志华. 一种新型偶氮染料在扭曲向列相液晶显示取向中的应用[J]. 光学学报, 2006, 26(8): 1210~1213

    Zhang Junrui, Liu Shaojin, Ling Zhihua. Application of new azodye in the photoalignmet of twisted nematic liquid crystal display[J]. Acta Optica Sinica, 2006, 26(8): 1210~1213

[22] 谢茹胜, 赵有源, 李潞瑛 等. 新型聚偶氮苯取向增强光折变效应及全息存储[J]. 光学学报, 2005, 25(7): 999~1004

    Xie Rusheng, Zhao Youyuan, Li Luying et al.. Orientationenhanced photorefractive effectand holographic storage in novel azobenzene doped polymer films[J]. Acta Optica Sinica, 2005, 25(7): 999~1004

[23] 罗洋城, 佘卫龙, 吴水珠 等. 偶氮苯掺杂聚合物光致双折射的一维空间分布[J]. 光学学报, 2005, 25(3): 370~374

    Luo Yangcheng, She Weilong, Wu Shuizhu et al.. Onedimensional spatial distribution of photoinduced birefringence of azobenzene dyedoped polymers[J]. Acta Optica Sinica, 2005, 25(3): 370~374

[24] 黄金堂,韦玮,申婧 等. 偶氮苯聚合物全息光栅衍射效率和偏振特性研究[J]. 光学学报, 2008, 28(11): 2199~2203

    Huang Jintang, Wei Wei, Shen Jing et al.. Study on diffraction efficiency and polarization characteristic of azobenzene polymer holographic grating[J]. Acta Optica Sinica, 2008, 28(11): 2199~2203

谭春华, 黄旭光. 基于带隙可调的二维光子晶体全光开关[J]. 光学学报, 2010, 30(9): 2714. Tan chunhua, Huang Xuguang. An AllOptical Switch Based on the Tunable Bandgap of a TwoDimensional Photonic Crystal[J]. Acta Optica Sinica, 2010, 30(9): 2714.

本文已被 11 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!