红外与毫米波学报, 2019, 38 (3): 275, 网络出版: 2019-07-20  

数字递变异变赝衬底上2.6 μm In0.83Ga0.17As/InP光电探测器的性能改进

Improved performances of 2.6 μm In0.83Ga0.17As/InP photodetectors on digitally-graded metamorphic pseudo-substrates
师艳辉 1,2,*杨楠楠 1,2马英杰 1,3,4顾溢 1,3,4陈星佑 1龚谦 1张永刚 1,3,4
作者单位
1 中国科学院上海微系统与信息技术研究所 信息功能材料国家重点实验室, 上海 200050
2 中国科学院大学, 北京 100049
3 中国科学院上海技术物理研究所 传感技术联合国家重点实验室, 上海 200083
4 中国科学院上海技术物理研究所 红外成像材料与器件重点实验室, 上海 200083
摘要
研究了In0.83Al0.17As/In0.52Al0.48As数字递变异变缓冲层结构(DGMB)的总周期数对2.6 μm延伸波长In0.83Ga0.17As光电二极管性能的影响.实验表明, 在保持总缓冲层厚度不变的情况下, 通过将在InP衬底上生长的In0.83Al0.17As/In0.52Al0.48As DGMB结构的总周期数从19增加到38, 其上所生长的In0.83Ga0.17As/In0.83Al0.17As光电二极管材料层的晶体质量得到了显著改善.对于在总周期数为38的DGMB上外延的In0.83Ga0.17As光电二极管, 观察到其应变弛豫度增加到99.8%, 表面粗糙度降低, 光致发光强度和光响应度均增强, 同时暗电流水平被显著抑制.这些结果表明, 随着总周期数目的增加, DGMB可以更有效地抑制穿透位错的传递并降低残余缺陷密度.
Abstract
Impacts of the total period number for the In0.83Al0.17As/In0.52Al0.48As digitally-graded metamorphic buffer (DGMB) on the performances of 2.6 μm In0.83Ga0.17As photodiodes (PDs) have been investigated. An increase of the total period number from 19 to 38 for the In0.83Al0.17As/In0.52Al0.48As DGMB with the same thickness has shown improved crystal qualities for the In0.83Ga0.17As/In0.83Al0.17As photodiode layers grown on such pseudo-substrates. An increased strain relaxation degree up to 99.8%, a reduced surface roughness, enhanced photoluminescence intensities as well as photo responsivities, and suppressed dark currents are observed simultaneously for the In0.83Ga0.17As photodiode on the DGMB with a period number of 38. These results suggest that with more periods, DGMB can restrain the transmission of the threading dislocations more efficiently and reduce the residual defect density.
参考文献

[1] Frankenberg C, Aben I, Bergamaschi P, et al. Global column-averaged methane mixing ratios from 2003 to 2009 as derived from SCIAMACHY: Trends and variability [J]. J Geophys Res-Atmos, 2011, 116: D04302.

[2] Parker R, Boesch H, Cogan A, et al. Methane observations from the Greenhouse Gases Observing SATellite: Comparison to ground-based TCCON data and model calculations [J]. Geophys. Res. Lett., 2011, 38: L15807.

[3] Hoogeveen R W M, van der A R J, Goede A P H. Extended wavelength InGaAs infrared (1.0-2.4 μm) detector arrays on SCIAMACHY for space-based spectrometry of the Earth atmosphere [J]. Infrared Phys. Technol., 2001, 42(1): 1-16.

[4] Zhang Y G, Gu Y, Chen X Y, et al. An effective indicator for evaluation of wavelength extending InGaAs photodetector technologies [J]. Infrared Phys. Technol., 2017, 83:45-50.

[5] Linga K R, Olsen G H, Ban V S, et al. Dark Current Analysis and Characterization of InxGa1-xAs/InAsyP1-y Graded Photodiodes with x>0.53 for Response to Longer Wavelengths (>1.7 μm) [J]. J. Lightwave Technol., 1992, 10(8): 1050-1055.

[6] Li C, Zhang Y G, Wang K, et al. Distinction investigation of InGaAs photodetectors cutoff at 2.9 μm [J]. Infrared Phys. Technol., 2010, 53(3): 173-176.

[7] Hudait M K, Lin Y, Ringel S A. Strain relaxation properties of InAsyP1-y metamorphic materials grown on InP substrates [J]. J. Appl. Phys., 2009, 105(6): 12.

[8] Zhang Y G, Gu Y, Wang K, et al. Properties of gas source molecular beam epitaxy grown wavelength extended InGaAs photodetector structures on a linear graded InAlAs buffer [J]. Semicond. Sci. Technol., 2008, 23(12): 125029.

[9] D'Hondt M, Moerman I, Van Daele P, et al. Influence of buffer layer and processing on the dark current of 2.5 μm-wavelength 2%-mismatched InGaAs photodetectors [J]. IEE Proc.-Optoelectron., 1997, 144(5): 277-282.

[10] Shang X Z, Wu S D, Liu C, et al. Low temperature step-graded InAlAs/GaAs metamorphic buner layers grown by molecular beam epitaxy [J]. J. Phys. D: Appl. Phys., 2006, 39(9): 1800-1804.

[11] Lee D, Park M S, Tang Z, et al. Characterization of metamorphic InxAl1-xAs/GaAs buffer layers using reciprocal space mapping [J]. J. Appl. Phys., 2007, 101(6): 8.

[12] Chen E B, Paine D C, Uppal P N, et al. Surface morphology evolution in highly mismatched Sb-graded buffer layers on GaAs [J]. Appl. Phys. Lett., 2001, 78(16): 2345-2347.

[13] Pease E A, Dawson L R, Vaughn L G, et al. 2.5-3.5 μm optically pumped GaInSb/AlGaInSb multiple quantum well lasers grown on AlInSb metamorphic buffer layers [J]. J. Appl. Phys., 2003, 93(6): 3177-3181.

[14] Wada M, Hosomatsu H. Wide wavelength and low dark current latticemismatched InGaAs/InAsP photodiodes grown by metalorganic vaporphase epitaxy [J]. Appl. Phys. Lett., 1994, 64(10): 1265-1267.

[15] Lin G R, Kuo H C, Lin C K, et al. Ultralow leakage In0.53Ga0.47As p-i-n photodetector grown on linearly graded metamorphic InxGa1-xP buffered GaAs substrate [J]. IEEE J. Quantum Electron., 2005, 41(6): 749-752.

[16] Choi H, Jeong Y, Cho J, et al. Effectiveness of non-linear graded buffers for In(Ga,Al)As metamorphic layers grown on GaAs (001) [J]. J. Cryst. Growth, 2009, 311(4): 1091-1095.

[17] Ma Y J, Zhang Y G, Chen X Y, et al. A versatile digitally-graded buffer structure for metamorphic device applications [J]. J. Phys. D: Appl. Phys., 2018, 51(14): 8.

[18] Zhang J, Chen X Y, Gu Y, et al. Optimization of growth temperatures for InAlAs metamorphic buffers and high indium InGaAs on InP substrate [J]. J. Infrared Millim. Waves, 2018, 37(6): 699-703.

[19] Zhu Y, Chen X Y, Ma Y J, et al. Surface and optical properties of silicon nitride deposited by inductively coupled plasma-chemical vapor deposition [J]. J. Semicond., 2018, 39(8): 083005.

[20] Saha S, Cassidy D T, Thompson D A. Investigation of cross-hatch in In0.3Ga0.7As pseudo-substrates [J]. J. Appl. Phys., 2013, 113(12): 5.

[21] Xi S P, Gu Y, Zhang Y G, et al. Effects of continuously graded or step-graded InxAl1-xAs buffer on the performance of InP-based In0.83Ga0.17As photodetectors [J]. J. Cryst. Growth, 2015, 425:337-340.

[22] Shen W Z, Shen S C, Tang W G, et al. Photoluminescence of quaternary GaInAsSb/AlGaAsSb strained multiple quantum wells [J]. J. Appl. Phys., 1995, 78(9): 5696-5700.

[23] Lei H P, Wu H Z, Lao Y F, et al. Difference of luminescent properties between strained InAsP/InP and strain-compensated InAsP/InGaAsP MQWs [J]. J. Cryst. Growth, 2003, 256(1-2): 96-102.

[24] Gu Y, Zhang Y G, Li A Z, et al. Structural and Photoluminescence Properties for Highly Strain-Compensated InGaAs/InAlAs Superlattice [J]. Chin. Phys. Lett., 2009, 26(7): 4.

[25] Zhang Y G, Xi S P, Zhou L, et al. Correction of intensity of emission spectra in a wide wave number range measured by FTIR [J]. J. Infrared Millim. Waves, 2016, 35(1): 63-67.

[26] Gu Y, Zhou L, Zhang Y G, et al. Dark current suppression in metamorphic In0.83Ga0.17As photodetectors with In0.66Ga0.34As/InAs superlattice electron barrier [J]. Appl. Phys. Express, 2015, 8(2): 022202.

师艳辉, 杨楠楠, 马英杰, 顾溢, 陈星佑, 龚谦, 张永刚. 数字递变异变赝衬底上2.6 μm In0.83Ga0.17As/InP光电探测器的性能改进[J]. 红外与毫米波学报, 2019, 38(3): 275. SHI Yan-Hui, YANG Nan-Nan, MA Ying-Jie, GU Yi, CHEN Xing-You, GONG Qian, ZHANG Yong-Gang. Improved performances of 2.6 μm In0.83Ga0.17As/InP photodetectors on digitally-graded metamorphic pseudo-substrates[J]. Journal of Infrared and Millimeter Waves, 2019, 38(3): 275.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!