激光与光电子学进展, 2019, 56 (17): 170613, 网络出版: 2019-09-05   

基于石墨烯的光纤功能化传感器件和激光器件 下载: 2647次特邀综述

Graphene-Based Fiber Functional Sensors and Laser Devices
作者单位
1 电子科技大学光纤传感与通信教育部重点实验室, 四川 成都, 611731
2 电子科技大学电子薄膜与集成器件国家重点实验室, 四川 成都, 610054
引用该论文

谭腾, 袁中野, 陈远富, 姚佰承. 基于石墨烯的光纤功能化传感器件和激光器件[J]. 激光与光电子学进展, 2019, 56(17): 170613.

Teng Tan, Zhongye Yuan, Yuanfu Chen, Baicheng Yao. Graphene-Based Fiber Functional Sensors and Laser Devices[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170613.

参考文献

[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

[2] Geim AK, Novoselov KS. The rise of graphene[M] ∥Rodgers P. Nanoscience and Technology: A Collection of Reviews from Nature Journals. Singapore: World Scientific, 2010: 11- 19.

[3] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200.

[4] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183.

[5] Geim A K. Graphene: status and prospects[J]. Science, 2009, 324(5934): 1530-1534.

[6] Allen M J, Tung V C, Kaner R B. Honeycomb carbon: a review of graphene[J]. Chemical Reviews, 2010, 110(1): 132-145.

[7] Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9): 611-622.

[8] Young R J, Kinloch I A, Gong L, et al. The mechanics of graphene nanocomposites: a review[J]. Composites Science and Technology, 2012, 72(12): 1459-1476.

[9] Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907.

[10] . Graphene nanophotonics[J]. Science, 2013, 339(6122): 917-918.

[11] Zhang Y B, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, 438(7065): 201-204.

[12] Katsnelson M I, Novoselov K S, Geim A K. Chiral tunnelling and the Klein paradox in graphene[J]. Nature Physics, 2006, 2(9): 620-625.

[13] Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308.

[14] Das A, Pisana S, Chakraborty B, et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor[J]. Nature Nanotechnology, 2008, 3(4): 210-215.

[15] Schwierz F. Graphene transistors[J]. Nature Nanotechnology, 2010, 5(7): 487-496.

[16] Rodrigo D, Limaj O, Janner D, et al. Mid-infrared plasmonic biosensing with graphene[J]. Science, 2015, 349(6244): 165-168.

[17] Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics[J]. Nature Photonics, 2012, 6(11): 749-758.

[18] Liu M, Yin X B, Ulin-Avila E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64-67.

[19] Phare C T. Daniel Lee Y H, Cardenas J, et al. Graphene electro-optic modulator with 30 GHz bandwidth[J]. Nature Photonics, 2015, 9(8): 511-514.

[20] 莫军, 冯国英, 杨莫愁, 等. 基于石墨烯的宽带全光空间调制器[J]. 物理学报, 2018, 67(21): 214201.

    Mo J, Feng G Y, Yang M C, et al. Graphene-based broadband all-optical spatial modulator[J]. Acta Physica Sinica, 2018, 67(21): 214201.

[21] Koppens F H L, Mueller T, Avouris P, et al. . Photodetectors based on graphene, other two-dimensional materials and hybrid systems[J]. Nature Nanotechnology, 2014, 9(10): 780-793.

[22] Chakraborty S, Marshall O P, Folland T G, et al. Gain modulation by graphene plasmons in aperiodic lattice lasers[J]. Science, 2016, 351(6270): 246-248.

[23] 赵静, 王加贤, 邱伟彬, 等. 基于石墨烯的表面等离激元带阻滤波器[J]. 激光与光电子学进展, 2018, 55(1): 012401.

    Zhao J, Wang J X, Qiu W B, et al. Surface plasmonic polariton band-stop filters based on graphene[J]. Laser & Optoelectronics Progress, 2018, 55(1): 012401.

[24] Novoselov K S, Fal’ko V I, Colombo L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200.

[25] Sun Z P, Martinez A, Wang F. Optical modulators with 2D layered materials[J]. Nature Photonics, 2016, 10(4): 227-238.

[26] Martinez A, Sun Z P. Nanotube and graphene saturable absorbers for fibre lasers[J]. Nature Photonics, 2013, 7(11): 842-845.

[27] Mueller T, Xia F N, Avouris P. Graphene photodetectors for high-speed optical communications[J]. Nature Photonics, 2010, 4(5): 297-301.

[28] Hill E W, Vijayaragahvan A, Novoselov K. Graphene sensors[J]. IEEE Sensors Journal, 2011, 11(12): 3161-3170.

[29] Liu Y X, Dong X C, Chen P. Biological and chemical sensors based on graphene materials[J]. Chemical Society Reviews, 2012, 41(6): 2283-2307.

[30] Yavari F, Koratkar N. Graphene-based chemical sensors[J]. The Journal of Physical Chemistry Letters, 2012, 3(13): 1746-1753.

[31] Loh K P, Bao Q L, Eda G, et al. Graphene oxide as a chemically tunable platform for optical applications[J]. Nature Chemistry, 2010, 2(12): 1015-1024.

[32] Li W, Chen B G, Meng C, et al. Ultrafast all-optical graphene modulator[J]. Nano Letters, 2014, 14(2): 955-959.

[33] Tong L M, Gattass R R, Ashcom J B, et al. Subwavelength-diameter silica wires for low-loss optical wave guiding[J]. Nature, 2003, 426(6968): 816-819.

[34] Hoffmann P, Dutoit B, Salathé R P. Comparison of mechanically drawn and protection layer chemically etched optical fiber tips[J]. Ultramicroscopy, 1995, 61: 165-170.

[35] Kou J L, Ding M, Feng J, et al. Microfiber-based Bragg gratings for sensing applications: a review[J]. Sensors, 2012, 12(7): 8861-8876.

[36] Lou J Y, Wang Y P, Tong L M. Microfiber optical sensors: a review[J]. Sensors, 2014, 14(4): 5823-5844.

[37] Xu Y X, Fang W, Tong L M. Real-time control of micro/nanofiber waist diameter with ultrahigh accuracy and precision[J]. Optics Express, 2017, 25(9): 10434-10440.

[38] Chen X F, Zhou K M, Zhang L, et al. Simultaneous measurement of temperature and external refractive index by use of a hybrid grating in D fiber with enhanced sensitivity by HF etching[J]. Applied Optics, 2005, 44(2): 178-182.

[39] Mayorov A S, Gorbachev R V, Morozov S V, et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature[J]. Nano Letters, 2011, 11(6): 2396-2399.

[40] Zhao S, Xie S C, Zhao Z, et al. Green and high-efficiency production of graphene by tannic acid-assisted exfoliation of graphite in water[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(6): 7652-7661.

[41] 平蕴杰, 龚佑宁, 潘春旭. 电化学剥离制备石墨烯及其光电特性研究进展[J]. 中国激光, 2017, 44(7): 0703007.

    Ping Y J, Gong Y N, Pan C X. Research progress in preparation of graphene from electrochemical exfoliation and its optoelectronic characteristics[J]. Chinese Journal of Lasers, 2017, 44(7): 0703007.

[42] Moon J S, Curtis D, Hu M, et al. Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates[J]. IEEE Electron Device Letters, 2009, 30(6): 650-652.

[43] Compton O C, Nguyen S T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials[J]. Small, 2010, 6(6): 711-723.

[44] Guo S J, Dong S J. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications[J]. Chemical Society Reviews, 2011, 40(5): 2644-2672.

[45] de Heer W A, Berger C, Wu X S, et al. . Epitaxial graphene electronic structure and transport[J]. Journal of Physics D: Applied Physics, 2010, 43(37): 374007.

[46] Zhou H L, Yu W J, Liu L X, et al. Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene[J]. Nature Communications, 2013, 4: 2096.

[47] 杨云畅, 武斌, 刘云圻. 双层石墨烯的化学气相沉积法制备及其光电器件[J]. 物理学报, 2017, 66(21): 218101.

    Yang Y C, Wu B, Liu Y Q. Synthesis of bilayer graphene via chemical vapor deposition and its optoelectronic devices[J]. Acta Physica Sinica, 2017, 66(21): 218101.

[48] 王文荣, 周玉修, 李铁, 等. 高质量大面积石墨烯的化学气相沉积制备方法研究[J]. 物理学报, 2012, 61(3): 038702.

    Wang W R, Zhou Y X, Li T, et al. Research on synthesis of high-quality and large-scale graphene films by chemical vapor deposition[J]. Acta Physica Sinica, 2012, 61(3): 038702.

[49] Cai J M, Ruffieux P, Jaafar R, et al. Atomically precise bottom-up fabrication of graphene nanoribbons[J]. Nature, 2010, 466(7305): 470-473.

[50] Yan X, Cui X, Li B S, et al. Large, solution-processable graphene quantum dots as light absorbers for photovoltaics[J]. Nano Letters, 2010, 10(5): 1869-1873.

[51] Brodie B C. On the atomic weight of graphite[J]. Philosophical Transactions of the Royal Society of London, 1859, 149: 249- 259.

[52] Staudenmaier L. Verfahren zur darstellung der graphitsäure[J]. Berichte der Deutschen Chemischen Gesellschaft, 1898, 31( 2): 1481- 1487.

[53] Hummers W S. Jr, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339.

[54] Chen J, Yao B W, Li C, et al. An improved Hummers method for eco-friendly synthesis of graphene oxide[J]. Carbon, 2013, 64: 225-229.

[55] 黄乐旭, 陈远富, 李萍剑, 等. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响[J]. 物理学报, 2012, 61(15): 156103.

    Huang L X, Chen Y F, Li P J, et al. Effects of preparation temperature of graphite oxide on the structure of graphite and electrochemical properties of graphene-based lithium-ion batteries[J]. Acta Physica Sinica, 2012, 61(15): 156103.

[56] Alam S N, Sharma N, Kumar L. Synthesis of graphene oxide (GO) by modified Hummers method and its thermal reduction to obtain reduced graphene oxide (rGO)[J]. Graphene, 2017, 6(1): 1-18.

[57] Wang H B, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications[J]. ACS Catalysis, 2012, 2(5): 781-794.

[58] Kong X K, Chen C L, Chen Q W. Doped graphene for metal-free catalysis[J]. Chemical Society Reviews, 2014, 43(8): 2841-2857.

[59] Yao B C, Wu Y, Cheng Y, et al. All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide[J]. Sensors and Actuators B: Chemical, 2014, 194: 142-148.

[60] Yao BC, WuY, ChenY, et al. Graphene-based microfiber gas sensor[J]. Proceedings of SPIE, 2012, 8421: 8421CD.

[61] Yao B C, Wu Y, Gong Y, et al. A highly sensitive and fast response molecular sensor based on graphene coated microfiber[J]. Proceedings of SPIE, 2012, 8421: 842186.

[62] Wu Y, Yao B C, Cheng Y, et al. Hybrid graphene-microfiber waveguide for chemical gas sensing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(1): 49-54.

[63] Bao Q L, Zhang H, Wang Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Advanced Functional Materials, 2009, 19(19): 3077-3083.

[64] Sun Z P, Hasan T, Torrisi F, et al. Graphene mode-locked ultrafast laser[J]. ACS Nano, 2010, 4(2): 803-810.

[65] Bogusławski J, Wang Y D, Xue H, et al. Graphene actively mode-locked lasers[J]. Advanced Functional Materials, 2018, 28(28): 1801539.

[66] Li C, Chen J H, Wang W S, et al. Graphene fibers: manipulation of nonlinear optical properties of graphene bonded fiber devices by thermally engineering Fermi-Dirac distribution[J]. Advanced Optical Materials, 2017, 5(21): 1700630.

[67] Yao B C, Liu Y, Huang S W, et al. Broadband gate-tunable terahertz plasmons in graphene heterostructures[J]. Nature Photonics, 2018, 12(1): 22-28.

[68] Yao B C, Huang S W, Liu Y, et al. Gate-tunable frequency combs in graphene-nitride microresonators[J]. Nature, 2018, 558(7710): 410-414.

[69] Fu H W, Jiang Y H, Ding J J, et al. Zinc oxide nanoparticle incorporated graphene oxide as sensing coating for interferometric optical microfiber for ammonia gas detection[J]. Sensors and Actuators B: Chemical, 2018, 254: 239-247.

[70] Wu Y, Yao B C, Cheng Y, et al. Highly sensitive gas sensor based on graphene/microfiber hybrid waveguide with Mach-Zehnder interferometer[J]. Proceedings of SPIE, 2014, 9157: 915747.

[71] Yao B C, Wu Y, Zhang A Q, et al. Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing[J]. Optics Express, 2014, 22(23): 28154-28162.

[72] Yao BC, WuY, Zhang AQ, et al. Graphene based surface plasmonics in microfiber multimode interferometer for gas sensing[C]∥Advanced Photonics, July 27-31, 2014, Barcelona Spain 2014. Washington, D. C.: OSA, 2014: SeW2C. 4.

[73] Yao B C, Rao Y J, Wang Z N, et al. Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers[J]. Scientific Reports, 2016, 5: 18526.

[74] Yao BC, Rao YJ, Wang ZN, et al. Broadly-tunable pulse generation in cavity-free graphene random fiber lasers[C]∥Conference on Lasers and Electro-Optics, June 5-10, 2016, San Jose, California, United States. Washington, D. C.: OSA, 2016: FM3D. 5.

[75] Li L, Feng Z Y, Qiao X G, et al. Ultrahigh sensitive temperature sensor based on Fabry-Perot interference assisted by a graphene diaphragm[J]. IEEE Sensors Journal, 2015, 15(1): 505-509.

[76] Zhang J, Liao G Z, Jin S S, et al. All-fiber-optic temperature sensor based on reduced graphene oxide[J]. Laser Physics Letters, 2014, 11(3): 035901.

[77] Li C, Liu Q W, Peng X B, et al. Analyzing the temperature sensitivity of Fabry-Perot sensor using multilayer graphene diaphragm[J]. Optics Express, 2015, 23(21): 27494-27502.

[78] Lin W W. Fiber-optic current sensor[J]. Optical Engineering, 2003, 42(4): 896-897.

[79] Ning Y N, Wang Z P, Palmer A W, et al. Recent progress in optical current sensing techniques[J]. Review of Scientific Instruments, 1995, 66(5): 3097-3111.

[80] Zheng BC, Yan SC, XuF, et al. High-sensitivity optical fiber current sensor based on suspended graphene membrane[C]∥International Photonics and OptoElectronics, June 16-19, 2015, Wuhan, China. Washington, D. C.: OSA, 2015: OT3B. 6.

[81] Zheng B C, Yan S C, Chen J H, et al. Miniature optical fiber current sensor based on a graphene membrane[J]. Laser & Photonics Reviews, 2015, 9(5): 517-522.

[82] Yan SC, Zheng BC, XuF, et al. A microfiber-graphene-integrated microresonator for current sensing[C]∥International Photonics and Opto Electronics, June 16-19, 2015, Wuhan, China. Washington, D. C.: OSA, 2015: OW2C. 1.

[83] Yan S C, Zheng B C, Chen J H, et al. Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator[J]. Applied Physics Letters, 2015, 107(5): 053502.

[84] Tan Y C, Tou Z Q, Chow K K, et al. Graphene-deposited photonic crystal fibers for continuous refractive index sensing applications[J]. Optics Express, 2015, 23(24): 31286-31294.

[85] 黄梦, 顾昌晟, 孙兵, 等. 基于石墨烯涂覆倾斜光纤光栅的折射率传感[J]. 中国激光, 2017, 44(12): 1210001.

    Huang M, Gu C S, Sun B, et al. Refractive index sensor based on tilted-fiber Bragg grating coated with graphene[J]. Chinese Journal of Lasers, 2017, 44(12): 1210001.

[86] Zheng BC, XuF. A compact fiber magnetic sensor based on graphene NEMS[C]∥Asia Communications and Photonics Conference 2015, November 19-23, 2015, HongKong, China Washington, D. C.: OSA, 2015: AM4A. 3.

[87] Liu ZY, Yan SC, Lu ZD, et al. A fiber-optic magnetometer based on graphene NEMS using superparamagnetic nanoparticles[C]∥CLEO Pacific Rim Conference, July 29-August 3, 2018, HongKong, China. Washington, D. C.: OSA, 2018: W2A. 76.

[88] Liu Z Y, Cao H Q, Xu F. Fiber-optic Lorentz force magnetometer based on a gold-graphene composite membrane[J]. Applied Physics Letters, 2018, 112(20): 203504.

[89] Ma J, Jin W, Ho H L. A fiber-tip Fabry-Perot pressure sensor with graphene diaphragm[J]. Proceedings of SPIE, 2012, 8421: 84211C.

[90] Dong N N, Wang S M, Jiang L, et al. Pressure and temperature sensor based on graphene diaphragm and fiber Bragg gratings[J]. IEEE Photonics Technology Letters, 2018, 30(5): 431-434.

[91] 葛益娴, 张鹏, 赵伟绩. 基于石墨烯薄膜的光纤微压传感器的设计[J]. 半导体光电, 2018, 39(1): 37-41.

    Ge Y X, Zhang P, Zhao W J. Design of micro-pressure sensor based on graphene diaphragm[J]. Semiconductor Optoelectronics, 2018, 39(1): 37-41.

[92] Zhao Y, Li X G, Zhou X, et al. Review on the graphene based optical fiber chemical and biological sensors[J]. Sensors and Actuators B: Chemical, 2016, 231: 324-340.

[93] Hernaez M, Zamarreño C, Melendi-Espina S, et al. Optical fibre sensors using graphene-based materials: a review[J]. Sensors, 2017, 17(12): 155.

[94] Shivananju B N, Yu W Z, Liu Y, et al. The roadmap of graphene-based optical biochemical sensors[J]. Advanced Functional Materials, 2017, 27(19): 1603918.

[95] 彭星玲, 李兵, 李玉龙. 微纳光纤布拉格光栅折射率与浓度传感器研究进展[J]. 激光与光电子学进展, 2018, 55(12): 120010.

    Peng X L, Li B, Li Y L. Research progress of refractive index and concentration sensors based on micro-nanofiber Bragg grating[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120010.

[96] Wu Y, Yao B C, Zhang A Q, et al. Graphene-based D-shaped fiber multicore mode interferometer for chemical gas sensing[J]. Optics Letters, 2014, 39(20): 6030-6033.

[97] Wu Y, Yao B C, Zhang A Q, et al. Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing[J]. Optics Letters, 2014, 39(5): 1235-1237.

[98] Sridevi S, Vasu K S, Bhat N, et al. Ultra sensitive NO2 gas detection using the reduced graphene oxide coated etched fiber Bragg gratings[J]. Sensors and Actuators B: Chemical, 2016, 223: 481-486.

[99] Zhang A Q, Wu Y, Yao B C, et al. Optimization study on graphene-coated microfiber Bragg grating structures for ammonia gas sensing[J]. Photonic Sensors, 2015, 5(1): 84-90.

[100] Sun Q Z, Luo H P, Luo H B, et al. Multimode microfiber interferometer for dual-parameters sensing assisted by Fresnel reflection[J]. Optics Express, 2015, 23(10): 12777-12783.

[101] Mishra S K, Tripathi S N, Choudhary V, et al. SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization[J]. Sensors and Actuators B: Chemical, 2014, 199: 190-200.

[102] Yu C B, Wu Y, Liu X L, et al. Graphene oxide deposited microfiber knot resonator for gas sensing[J]. Optical Materials Express, 2016, 6(3): 727-733.

[103] Yao B C, Yu C B, Wu Y, et al. Graphene-enhanced Brillouin optomechanical microresonator for ultrasensitive gas detection[J]. Nano Letters, 2017, 17(8): 4996-5002.

[104] Lehner P, Staudinger C, Borisov S M, et al. Ultra-sensitive optical oxygen sensors for characterization of nearly anoxic systems[J]. Nature Communications, 2014, 5: 4460.

[105] Jin W, Cao Y C, Yang F, et al. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range[J]. Nature Communications, 2015, 6: 6767.

[106] Girei S H, Shabaneh A A, Ngee-Lim H, et al. Tapered optical fiber coated with graphene based nanomaterials for measurement of ethanol concentrations in water[J]. Optical Review, 2015, 22(3): 385-392.

[107] Yao BC, WuY, Webb DJ, et al. Graphene-based D-shaped polymer FBG for highly sensitive erythrocyte detection[C]∥Frontiers in Optics 2015, October 18-22, 2015, San Jose, California, United States. Washington, D. C.: OSA, 2015: FTh2E. 3.

[108] Sridevi S, Vasu K S, Asokan S, et al. Sensitive detection of C-reactive protein using optical fiber Bragg gratings[J]. Biosensors and Bioelectronics, 2015, 65: 251-256.

[109] 肖毅, 张军, 蔡祥, 等. 基于石墨烯的光纤湿度传感研究[J]. 光学学报, 2015, 35(4): 0406005.

    Xiao Y, Zhang J, Cai X, et al. Fiber-optic humidity sensing based on graphene[J]. Acta Optica Sinica, 2015, 35(4): 0406005.

[110] Gao R, Lu D F, Cheng J, et al. Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide[J]. Sensors and Actuators B: Chemical, 2016, 222: 618-624.

[111] Fu H Y, Zhang S W, Chen H, et al. Graphene enhances the sensitivity of fiber-optic surface plasmon resonance biosensor[J]. IEEE Sensors Journal, 2015, 15(10): 5478-5482.

[112] Dash J N, Jha R. On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance[J]. Plasmonics, 2015, 10(5): 1123-1131.

[113] Kim J A, Hwang T, Dugasani S R, et al. Graphene based fiber optic surface plasmon resonance for bio-chemical sensor applications[J]. Sensors and Actuators B: Chemical, 2013, 187: 426-433.

[114] Dash J N, Jha R. Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance[J]. IEEE Photonics Technology Letters, 2014, 26(11): 1092-1095.

[115] Zhang N MY, Li KW, Shum PP, et al. Graphene enhanced surface plasmon resonance fiber-optic biosensor[C]∥Conference on Lasers and Electro-Optics, June 5-10, 2016, San Jose, California, United States. Washington, D. C.: OSA, 2016: SM4P. 4.

[116] Rifat A A, Mahdiraji G A, Ahmed R, et al. Copper-graphene-based photonic crystal fiber plasmonic biosensor[J]. IEEE Photonics Journal, 2016, 8(1): 4800408.

[117] Paul AK, Sarkar AK, Razzak S M A. Graphene coated photonic crystal fiber biosensor based on surface plasmon resonance[C]∥2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), December 21-23, 2017. Dhaka, Bangladesh. New York: IEEE, 2017: 856- 859.

[118] Wang F M, Sun Z J, Liu C, et al. A highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance biosensor with silver-graphene layer[J]. Plasmonics, 2017, 12(6): 1847-1853.

[119] Tong K, Wang F C, Wang M T, et al. D-shaped photonic crystal fiber biosensor based on silver-graphene[J]. Optik, 2018, 168: 467-474.

[120] SveltoO, Hanna DC. Principles of lasers[M]. New York: Plenum Press, 1998.

[121] Keller U, Weingarten K J, Kartner F X, et al. Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2(3): 435-453.

[122] Popa D, Sun Z, Torrisi F, et al. Sub 200 fs pulse generation from a graphene mode-locked fiber laser[J]. Applied Physics Letters, 2010, 97(20): 203106.

[123] Popa D, Sun Z, Hasan T, et al. Graphene Q-switched, tunable fiber laser[J]. Applied Physics Letters, 2011, 98(7): 073106.

[124] Zhang H, Tang D Y, Knize R J, et al. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser[J]. Applied Physics Letters, 2010, 96(11): 111112.

[125] Liu Z B, He X Y, Wang D N. Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution[J]. Optics Letters, 2011, 36(16): 3024-3026.

[126] Cui Y D, Liu X M. Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons[J]. Optics Express, 2013, 21(16): 18969-18974.

[127] Fu B, Hua Y, Xiao X S, et al. Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2 μm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 411-415.

[128] Zhu G W, Zhu X S, Wang F Q, et al. Graphene mode-locked fiber laser at 2.8 μm[J]. IEEE Photonics Technology Letters, 2016, 28(1): 7-10.

[129] 王小发, 张俊红, 高子叶, 等. 基于石墨烯可饱和吸收体的纳秒锁模掺铥光纤激光器[J]. 物理学报, 2017, 66(11): 114209.

    Wang X F, Zhang J H, Gao Z Y, et al. Nanosecond mode-locked Tm-doped fiber laser based on graphene saturable absorber[J]. Acta Physica Sinica, 2017, 66(11): 114209.

[130] Zapata J D, Steinberg D. Saito L A M, et al. Efficient graphene saturable absorbers on D-shaped optical fiber for ultrashort pulse generation[J]. Scientific Reports, 2016, 6: 20644.

[131] Zhao N, Liu M, Liu H, et al. Dual-wavelength rectangular pulse Yb-doped fiber laser using a microfiber-based graphene saturable absorber[J]. Optics Express, 2014, 22(9): 10906-10913.

[132] Liu X M, Yang H R, Cui Y D, et al. Graphene-clad microfibre saturable absorber for ultrafast fibre lasers[J]. Scientific Reports, 2016, 6: 26024.

[133] Wang X F, Zhang J H, Peng X L, et al. Generation and evolution of multiple operation states in passively mode-locked thulium-doped fiber laser by using a graphene-covered-microfiber[J]. Chinese Physics B, 2018, 27(8): 084215.

[134] Luo Z Q, Zhou M, Weng J, et al. Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser[J]. Optics Letters, 2010, 35(21): 3709-3711.

[135] Tang Y L, Yu X C, Li X H, et al. High-power thulium fiber laser Q switched with single-layer graphene[J]. Optics Letters, 2014, 39(3): 614-617.

[136] Choudhary A, Beecher S J, Dhingra S, et al. 456-mW graphene Q-switched Yb∶yttria waveguide laser by evanescent-field interaction[J]. Optics Letters, 2015, 40(9): 1912-1915.

[137] Liu S J, Zhu X S, Zhu G W, et al. Graphene Q-switched Ho 3+-doped ZBLAN fiber laser at 1190 nm [J]. Optics Letters, 2015, 40(2): 147-150.

[138] Huang B, Yi J, Du L, et al. Graphene Q-switched vectorial fiber laser with switchable polarized output[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(1): 26-32.

[139] Yao B C, Rao Y J, Huang S W, et al. Graphene Q-switched distributed feedback fiber lasers with narrow linewidth approaching the transform limit[J]. Optics Express, 2017, 25(7): 8202-8211.

[140] Li D, Xue H, Qi M, et al. Graphene actively Q-switched lasers[J]. 2D Materials, 2017, 4(2): 025095.

[141] Li D, Xue H, Wang Y D, et al. Active synchronization and modulation of fiber lasers with a graphene electro-optic modulator[J]. Optics Letters, 2018, 43(15): 3497-3500.

[142] Chen J H, Zheng B C, Shao G H, et al. An all-optical modulator based on a stereo graphene-microfiber structure[J]. Light: Science & Applications, 2015, 4(12): e360.

[143] 冯秋燕, 姚佰承, 周金浩, 等. 基于飞秒激光抽运的石墨烯包裹微光纤波导结构的级联四波混频研究[J]. 物理学报, 2015, 64(18): 184214.

    Feng Q Y, Yao B C, Zhou J H, et al. Four-wave-mixing generated by femto-second laser pumping based on graphene coated microfiber structure[J]. Acta Physica Sinica, 2015, 64(18): 184214.

[144] Gan X T, Zhao C Y, Wang Y D, et al. Graphene-assisted all-fiber phase shifter and switching[J]. Optica, 2015, 2(5): 468-471.

[145] 杨翠红, 王璐, 陈云云, 等. 电压调制的石墨烯PN结在太赫兹区的光吸收特性[J]. 激光与光电子学进展, 2017, 54(11): 112601.

    Yang C H, Wang L, Chen Y Y, et al. Optical absorption property of graphene PN junction modulated by voltage in terahertz region[J]. Laser & Optoelectronics Progress, 2017, 54(11): 112601.

[146] Zhang J, Peng B, Özdemir Ş K, et al. A phonon laser operating at an exceptional point[J]. Nature Photonics, 2018, 12(8): 479-484.

[147] Chen W J, Özdemir Ş K, Zhao G M, et al. Exceptional points enhance sensing in an optical microcavity[J]. Nature, 2017, 548(7666): 192-196.

[148] 毕卫红, 马敬云, 杨凯丽, 等. 石墨烯光纤及其应用[J]. 激光与光电子学进展, 2017, 54(4): 040002.

    Bi W H, Ma J Y, Yang K L, et al. Graphene-based optical fiber and its applications[J]. Laser & Optoelectronics Progress, 2017, 54(4): 040002.

谭腾, 袁中野, 陈远富, 姚佰承. 基于石墨烯的光纤功能化传感器件和激光器件[J]. 激光与光电子学进展, 2019, 56(17): 170613. Teng Tan, Zhongye Yuan, Yuanfu Chen, Baicheng Yao. Graphene-Based Fiber Functional Sensors and Laser Devices[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170613.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!