激光与光电子学进展, 2019, 56 (17): 170613, 网络出版: 2019-09-05   

基于石墨烯的光纤功能化传感器件和激光器件 下载: 2649次特邀综述

Graphene-Based Fiber Functional Sensors and Laser Devices
作者单位
1 电子科技大学光纤传感与通信教育部重点实验室, 四川 成都, 611731
2 电子科技大学电子薄膜与集成器件国家重点实验室, 四川 成都, 610054
摘要
石墨烯材料的发展将光电子学、微纳米技术和材料物理学紧密联系在一起。作为一种柔性薄膜,石墨烯材料在光纤光波导平台上的组装更加方便。近年来,基于石墨烯的光纤功能器件以其丰富的功能推动着光电子学科的发展。重点关注当前广泛应用的传感、激光和非线性器件,介绍了石墨烯及其相关材料的制备工艺和与光纤结合的方法。通过对国内外相关研究成果的综述,充分展现了石墨烯光纤器件的性能和应用优势。
Abstract
The functionalized graphene materials link optoelectronics, micro- and nano-technology, and material physics; further, these materials exhibit good integration capability with fibers and waveguides because of their atomically thin nature. The recent development of optoelectronics has been driven by the graphene-based fiber functional devices. This study focuses on the extensively used sensors, lasers, and nonlinear devices and briefly introduces the fabrication of graphene and related materials along with the implementations of the fiber/waveguide structures. Furthermore, we demonstrate the advantages of graphene-based fiber devices based on their performances and applications by reviewing the relevant research results.

1 引言

石墨烯(Graphene)作为一种由单层碳原子组成六角型呈蜂巢晶格的二维碳纳米材料[1-2],自2004年诞生以来,就成为纳米技术研究的热门话题,受到物理学家、化学家、材料科学家和工程师的密切关注[1,3-5],逐步从化学物理学、材料科学[6-7]领域拓展到光电子学、力学和热学[8-11]领域。特别是在光电子学中,因其准粒子狄拉克费米子遵循线性色散和手征对称性[12-13],故石墨烯的光学传导率仅由精细结构常数[14]决定。此外,石墨烯具有独特的零带隙,其电荷载流子浓度可以通过施加的电场来控制[1],该特性使石墨烯具有显著的载流子密度可调性和相应的表面灵敏度[15-17]。基于石墨烯独特且优异的光电子学特性,研究者们探索了一系列基于石墨烯的先进光电子和光子器件,如调制器[18-20]、光电探测器[21]、可控等离激元[17,22-23]、超快激光器、光学非线性器件和传感器[24-31],在光电子应用,特别是微纳/集成光电子应用中展现出广阔的应用前景[7,10,24]。本文阐述了石墨烯光纤复合结构的制备技术,重点介绍了基于石墨烯功能化的传感器、激光器和非线性控制器件。

2 基于石墨烯的光纤复合结构及其制备技术

2.1 承载石墨烯的光纤元件平台

石墨烯以其独特柔性特点,能够非常方便地和光纤结构进行组装[32],通过倏逝波耦合,实现光纤复合结构的功能化。目前,常用的光纤平台包括微纳光纤和D形光纤。微纳光纤的制备通常采用熔融拉锥法[33]和化学蚀刻法[34-35]。采用熔融拉锥法制备微光纤从模式上类似于从预制棒中拉出光纤的过程,其光学损失主要取决于微光纤质量,稳定的拉锥过程能保证制成的微光纤具有圆形的横截面、均匀的直径分布、光滑的外表面和高度的一致性[36]。加热器可以是火焰(通常是氢氧焰)、电加热器或激光加热管。图1(a)展示了熔融拉锥法的典型装置。最近,利用“火焰刷(flame-brushing)”技术,已经实现了直径范围为800 nm~1.3 μm、不均匀度小于5 nm且腰部长度大于30 cm的高质量二氧化硅微纳米纤维[37];图1(b)显示了典型微光纤的显微镜照片。化学蚀刻法制备微光纤相比于熔融拉锥法,保留了原始光纤的内部微结构(如光子晶体结构和布拉格光栅结构),面对需要保留光纤内部结构的应用,化学蚀刻法更加适用[38]。对于二氧化硅波导纤维蚀刻,通常使用氢氟酸作为腐蚀剂。与通过熔融拉锥法制造的微纤维相比,化学蚀刻的微纤维具有更大的平均直径,通常在8~12 μm的范围内。D形光纤又称作侧面抛磨光纤,通过去除光纤一侧的包层使纤芯与外界接触。不同于微光纤,D形光纤的制备是对原本光纤局部的、非对称的加工,目前主流的加工方式为机械抛磨。一套D形光纤抛磨装置通常包括用于机械抛磨的研磨轮、缓冲液注水管、光纤夹具、配重、激光器和功率计,其结构如图1(d)所示,该装置可以对不同类别的光纤进行抛磨作业,包括普通单模光纤、多模光纤和光子晶体光纤等。

图 1. 光纤元件制造。(a)熔融拉锥法微纳光纤拉制设备;(b)二氧化硅微光纤;(c)微光纤红光表征;(d) D形光纤抛磨设备;(e) SMF-D形光纤;(f) SMF-D形光纤红光表征[33,38]

Fig. 1. Fabrication of fiber components. (a) Micro-nanofiber drawing equipment based on fused tapering method; (b) silica microfiber; (c) microfiber red light characterization; (d) D-shaped fiber polishing equipment;(e) SMF-D-shaped fiber; (f) red light characterization of SMF-D-shaped fiber[33,38]

下载图片 查看所有图片

2.2 功能化的石墨烯材料

根据应用需求,可将用于光纤器件功能化的石墨烯材料分为多种类型,主要包括本征石墨烯(Graphene)、氧化石墨烯(GO)、部分还原氧化石墨烯(prGO)以及元素掺杂石墨烯。

石墨烯的制备方法主要包括机械剥离法[39]、化学剥离法[40-41]、还原氧化石墨烯[42-43]、碳化硅上的外延生长[44-45]、化学气相沉积(CVD)[46-48]和化学合成[49-50]。化学气相沉积(CVD)方法已成为大规模生产单层和多层石墨烯薄膜最有前景的技术之一。该技术制备的石墨烯在英寸尺度范围内具有良好的尺度均匀性,通过湿法转移技术已广泛应用于光电子器件中。氧化石墨烯是石墨烯的氧化物,通常由Brodie方法[51]、Staudenmaier方法[52]、Hummers方法[53]或这些方法的一些变体方法合成[54-56]。部分还原氧化石墨烯的制备首先沉积氧化石墨烯薄膜,再通过维生素C等还原剂还原以除去氧化石墨烯的部分氧基团。与CVD石墨烯薄膜相比,prGO薄膜通常具有更多缺陷,但GO薄膜的沉积不需要额外的转移过程,相比于其他方法更容易实现。石墨烯基材料可以通过掺杂进行有效的改性,从而使其性能适用于特定的场景。通常通过原位[57]和非原位[58]掺杂方法向碳晶格网络中注入杂质原子,最常用和被广泛研究的掺杂原子是氮、氧、硼、磷和硫。

石墨烯因其具有非常良好的光学特性、稳定的晶体结构、强极性分子吸附能力、高载流子迁移率、电可调的电导率和宽谱光可饱和吸收特性,被广泛应用于化学气体生化传感[59-62]、超快激光器[63-64]和电可调谐光电子器件[65-68]。氧化石墨烯是石墨烯的氧化物形式,在其基面上存在许多含氧官能团,如环氧化物、羟基、羰基和羧基。这些含氧官能团使得石墨烯很容易与含氨基、羧基、异氰酸酯基等极性聚合物基质发生反应,在蛋白质、核酸、葡萄糖等生物分子的检测上有明显的性能优势,但是,这些含氧官能团降低了导电性,限制了其在光电子器件的应用。部分还原的氧化石墨烯同时具有氧化石墨烯和本征石墨烯的性质,在存在含氧官能团的同时具备石墨烯的优良光学特性,并且相比于石墨烯更容易制备,在部分场合可以替代石墨烯作为传感和光电子材料。石墨烯中掺杂原子后可以转变为p型或n型半导体,并可开放石墨烯的带隙,在半导体光电子器件领域有着广泛的应用,同时通过特定掺杂可以使石墨烯拥有对气体的高选择性,实现功能特异性的高灵敏气体传感[69]

2.3 复合波导构成

基于光学结构设计和材料特点,有代表性的光纤/石墨烯复合波导包括:微光纤贴附石墨烯型、石墨烯包裹微光纤型、基于石墨烯的D形光纤复合波导和光纤端面贴附石墨烯型。复合波导的制备步骤如下:1) 将聚甲基苯烯酸甲酯(PMMA)旋涂在石墨烯/铜复合层的上表面,并固化PMMA;2) 将PMMA/石墨烯/铜复合层放置在FeCl3溶液中,通过置换反应溶解掉铜层,去除了铜层的PMMA/石墨烯复合薄膜会漂浮在溶液表面;3) 将PMMA/石墨烯柔性薄膜用去离子水(DIW)浸泡和清洗;4) 通过包裹微光纤、贴附氟化镁基底、覆盖片上波导结构和光纤端面蘸取等方式将PMMA/石墨烯复合薄膜与波导结合;5) 将PMMA/石墨烯/波导复合结构烘干定型;6) 将定型的PMMA/石墨烯/波导复合结构置于丙酮或丙酮蒸汽中,去除PMMA层[59,70-74]。该方法同样适用于氧化石墨烯以及其他二维材料。各种复合波导的具体制备工艺如图2所示。

图 2. 复合波导制备工艺。(a)微光纤贴附石墨烯;(b)石墨烯包裹微光纤;(c)基于石墨烯的D形光纤复合波导;(d)光纤端面贴附石墨烯[59,70-74]

Fig. 2. Composite waveguide fabrication process. (a) Micro-fiber attached graphene; (b) graphene-coated micro-fiber; (c) graphene-based D-shaped fiber composite waveguide; (d) fiber end-face attached graphene[59,70-74]

下载图片 查看所有图片

3 基于石墨烯的功能化光纤传感器

目前,石墨烯已经应用于各种光纤传感器,并且这些传感器中的大多数是利用石墨烯与光纤倏逝波的相互作用进行传感。石墨烯结合光纤传感技术是一种新的传感方式,近年来,研究人员基于该传感方式提出了各种传感器结构用于实现对物理量、气体和生化的传感。

3.1 物理量传感

当环境温度发生微小变化时,石墨烯的导热系数会发生相应的变化。由于良好的热光效应,石墨烯的折射率会发生明显的快速变化,能实现基于光纤的温度传感。石墨烯的折射率与温度的关系式为[75]

neff(T)=neff(T0)(1+σgΔT),(1)

式中:neff(T)表示温度为T时的石墨烯有效折射率;neff(T0)表示温度为T0时的石墨烯有效折射率;石墨烯导热系数σg=10-4 K-1T= T-T0表示温度差。

基于该效应,2014年,Zhang等[76]通过比较同一可调温度室内的去除涂层的标准单模光纤(SMF)、D形光纤和涂有还原氧化石墨烯(rGO)薄膜的D形光纤三种温度探头,验证了rGO的温度敏感性。图3(a)为该传感器的传感结构,图3(b)为镀rGO膜侧抛磨光纤中光传输功率随温度的变化。从图中可以看出,贴附rGO薄膜的D形光纤的输出光强度与环境温度呈线性关系,这是由于rGO的电子空穴浓度会随着温度的增加而增加,导致rGO的实际动态电导率降低,使石墨烯的光吸收减少,从而使输出光强度随温度的增加而增加。这种温度传感器结构简单、易于制造且灵敏度高。本实验验证了石墨烯的温度敏感性,但仍然存在问题,如不同的气体或湿度环境会干扰测量结果。当温度变化时,石墨烯的导热系数和热膨胀系数也会发生变化,导致石墨烯的折射率和形状都会发生变化,使测量结果出现偏差。2015年,Li等[75]将石墨烯与Fabry-Pérot(FP)腔结合,提出了一种基于干涉的FP温度传感器结构,结构如图3(c)所示,将单模光纤插入毛细管,毛细管的端面覆盖石墨烯形成微腔。温度的改变会引起微腔干涉谱漂移,通过检测干涉谱漂移量实现温度测量。该传感器的测温范围由微腔的自由光谱范围决定,测温结果如图3(d)所示。不管是温度升高还是温度降低,温度测量都具有良好的线性度和高灵敏度。2015年,Li等[77]对这种结构的石墨烯层进行了优化,发现当端面涂有8层石墨烯时,温度灵敏度最高。与不含石墨烯的FP温度传感器相比,石墨烯改善了灵敏度、线性度、响应速度和温度测量范围。

图 3. 光纤温度传感器。(a) D形光纤温度传感器结构;(b)镀rGO膜D形光纤中光传输功率随温度的变化;(c) FP腔温度传感器结构;(d) FP腔谐振波长随温度的变化[75-76]

Fig. 3. Fiber temperature sensors. (a) D-shaped fiber temperature sensor structure; (b) optical transmission power in D-shaped fiber coated with rGO film as a function of temperature; (c) FP cavity temperature sensor structure; (d) FP cavity resonance wavelength as a function of temperature[75-76]

下载图片 查看所有图片

光纤电流传感器由于抗电磁干扰而被广泛使用[78]。实现光纤电流传感器的一个重要方法是使用磁光效应,但因为光纤Verdet常数相对较低[79],所以基于磁效应的传感器通常尺寸较大;另一种方法是使用热效应,例如更容易实现的热膨胀效应或热光效应。南京大学徐飞教授课题组在基于石墨烯的光纤电流传感器方面进行了较为系统的研究。基于石墨烯优良的热膨胀效应和热光效应,设计了两种传感结构,即在光纤端面悬浮石墨烯薄膜和由微光纤石墨烯集成谐振器[80-83]。2015年,徐飞教授课题组Zheng等[80]报道了一种基于悬浮石墨烯膜的高灵敏度光纤电流传感器。悬浮石墨烯膜是基于热效应的光纤电流传感器的理想传感元件,结构如图4(a)所示。当石墨烯薄膜被电流加热时,凹陷的石墨烯膜均匀收缩,导致腔长增加,使得反射谱谐振波长漂移。由于悬浮的石墨烯膜尺寸是微型的,所以整个过程非常快。在实验中测得的传感器灵敏度为0.177 nm/mA2,1 mA时相应的精度为56.6 μA,响应时间小于0.4 s。为进一步提升传感性能,他们在同年报道了基于准静态石墨烯纳米机电系统(NEMS)的微型光纤电流传感器[81],该传感器具有集成在预蚀刻光纤尖端上的电极和石墨烯膜,结构如图4(b)所示,实现了2.2×105 nm/A2的超高灵敏度,每毫安误差超高精度不超过45.5 μA,而且具有15 μm的紧凑设备尺寸和0.25 s的短响应时间。使用质量更好的较小石墨烯膜,响应时间还可以进一步缩短到亚毫秒级。在实际应用中,该传感器容易受环境温度的影响,可以通过集成其他温度敏感器件,如光纤布拉格光栅和内联FP微腔,以补偿周围环境的温度变化。同组的Yan等[82-83]提出了一种微光纤线圈谐振器,该结构使用基于石墨烯的光纤电流传感器。该器件将具有大薄层电阻的单层石墨烯片转移到玻璃毛细管杆的表面,然后将微纤维螺旋缠绕在石墨烯片周围以形成线圈谐振器,结构如图4(c)所示。受微光纤谐振器中的热效应的影响,电流产生的热量使谐振波长发生偏移,灵敏度达67.297 μm/A2,相比于悬浮石墨烯薄膜的光纤电流传感器,该结构具有更大的电流测量范围。

图 4. 基于石墨烯的光纤电流传感器。(a)普通光纤端面悬浮石墨烯薄膜传感结构及其传感电流响应曲线;(b)刻蚀光纤端面悬浮石墨烯传感结构及其传感电流响应曲线;(c)微光纤线圈谐振器传感结构及其传感电流响应曲线[80-83]

Fig. 4. Graphene-based fiber current sensors. (a) Sensor structure and sensing current response curve of suspension graphene film on end face of single mode fiber; (b) sensor structure and sensing current response curve of suspension graphene film on end face of etched fiber; (c) sensor structure and sensing current response curve of micro-fiber coil resonator[80-83]

下载图片 查看所有图片

除了高效灵敏的温度和电流传感,基于石墨烯的光纤物理量传感器还能够实现更多的应用。2015年,Tan等[84]将石墨烯覆盖在光子晶体光纤(PCFs)上,实现了对外界环境折射率的连续变化检测,图5(a)展示了传感结构和性能。因为石墨烯的高折射率改变了PCF包层的有效折射率,传感器只需要检测随外界折射率改变的信号强度,其传感范围不再受限于PCF的自由频谱范围。该装置在折射率范围为1.33~1.38以及1.38~1.43时,灵敏度达到了9.4 dB/RIU(RIU为单位折射率)以及17.5 dB/RIU。2017年,黄梦等[85]报道了基于石墨烯涂覆倾斜光纤光栅的折射率传感,将3.7 nm厚度的石墨烯(约11层)涂覆在倾斜角度为8°的光纤光栅上进行实验,测得光栅在折射率1.33附近的灵敏度达到1.57161 nm/RIU,与未镀石墨烯的光栅相比,灵敏度约提高20倍。2015年,Zheng等[86]展示了一种基于石墨烯的纳米机电系统的光纤磁传感器。利用石墨烯独特的电子和机械性能,制造出了装置大小为14.9 μm的磁传感器,灵敏度达到了110 kHz/T。在此装置的基础上,Liu等[87]在石墨烯薄膜上吸附了超顺磁性氧化铁纳米粒子,并用其作为磁感元素。制造出的装置大小为20 μm的磁传感器,其灵敏度达到了104.5 kHz/T。同组还利用基于金-石墨烯复合薄膜的NEMS装置,制作出了大小为74 μm的磁传感器,在电流为16 mA时,灵敏度为0.64 pm/mT[88],图5(b)展示了其传感结构和性能。

基于石墨烯的压力传感器基本都采用了光纤末端FP腔的装置,利用石墨烯对外部压力敏感的特性,改变法珀腔的腔长,从而测得外部压力变化。2012年,Ma等[89]利用硅胶毛细管作为FP腔的腔体,一端溶解单模光纤,另一端覆盖石墨烯。该装置在外界压强为0~5 kPa时,灵敏度达到了34.6 nm/kPa。2018年,Dong等[90]通过增加石墨烯的直径和厚度,使传感装置在外界压强为0~2 kPa时,灵敏度提升到了501.4 nm/kPa,图5(c)展示了其传感结构和性能。同年,Ge等[91]设计了一款基于石墨烯薄膜的光纤微压传感器,分析了不同层数石墨烯薄膜的压力传感特性。

3.2 化学气体传感

石墨烯具有较大的表面积率,单层石墨烯的每个碳原子都可视为表面原子。石墨烯对多种分子具有吸附能力,如氨气、氧气、氢气、一氧化碳、重金属离子、有机染料、芳香族污染物和蛋白质等,故可实现高性能气体浓度传感器[92-95]。通过逐步优化传感结构和机理,这些基于石墨烯的光纤气体传感器的灵敏度从千分之一(10-3)水平逐渐提高到十亿分之一(10-9)水平。

基于石墨烯的光纤气体传感器的主要传感机理为:石墨烯吸附气体分子,改变了石墨烯的电导率,进而对石墨烯折射率产生调制作用;当光纤中的光以倏逝场的形式与石墨烯相互作用时,其对折射率的调制作用转变为对光的调制作用;在接收端解调获取传感信息。

2012年,电子科技大学率先报道了基于光强检测和干涉解调的气体传感器[59-62]图6(a)和图6(b)显示了系统结构。光强检测方案使用长度为几厘米且直径约1 μm的微纳光纤贴附石墨烯,实现光与石墨烯的相互作用。这种方案与基于石墨烯的D形光纤类似[73,96],但更容易操作[62]。如图6(a)所示,石墨烯吸附丙酮气体分子会大大抑制光学传输,例如,对于体积分数为1150×10-6的丙酮气体,传输损耗增加超过3 dB,该结构的最大灵敏度约为0.3 dB/10-3图6(b)显示了基于石墨烯-微纳光纤的马赫-曾德尔干涉仪(MZI)及其对NH3气体检测的性能[59]。干涉解调方案可以实现检测的高灵敏度和快速响应,对于NH3浓度的检测实现了0.3×10-6的分辨率和0.5 s的响应延迟。

相比于石墨烯贴附光纤,自2014年以来,石墨烯包裹微纤维的结构拥有更高的光电子相互作用效率。例如,基于石墨烯包裹的微光纤布拉格光栅(MFBG)的方案可以显著地减小传感器的体积。2014年,Wu等[97]报道了基于MFBG的超灵敏NH3气体传感器。图6(a)显示了用单层石墨烯包裹通过化学蚀刻得到的MFBG,通过检测MFBG的反射波长漂移量可以测量基于有效折射率调制的气体吸附。CVD石墨烯包裹的MFBG对NH3气体的最大灵敏度为0.2×10-6,对二甲苯气体的最大灵敏度为0.5×10-6。2016年,Sridevi等[98]报道了基于MFBG的超灵敏NO2气体传感器。该工作选择还原氧化石墨烯薄膜而不是CVD石墨烯薄膜,因为还原氧化石墨烯薄膜对NO2气体有更好的选择性。如图6(b)所示,对NO2的传感灵敏度达到0.5×10-6。但是由于还原的GO膜比CVD石墨烯更厚且更蓬松,其响应时间为分钟级。2015年,Zhang等[99]进一步研究指出,影响基于石墨烯的MFBG传感器传感性能的一个重要因素是MFBG的直径。

图 5. 基于石墨烯的物理量传感器。(a)基于石墨烯的光纤折射率传感器;(b)基于石墨烯的光纤磁场传感器;(c)基于石墨烯的光纤压力传感器[84,88,90]

Fig. 5. Graphene-based physical quantity sensors. (a) Graphene-based fiber refractive index sensor; (b) graphene-based fiber magnetic field sensor; (c) graphene-based fiber pressure sensor[84,88,90]

下载图片 查看所有图片

在基于石墨烯的微光纤结构中,增强光与石墨烯相互作用的另一种方法是激发具有较大模场面积的高阶模式传播或激发等离子体。2014年,Yao等[71]报道了一种基于石墨烯的微纤维多模干涉仪传感结构,如图7(a)所示。在这种结构中,HE21模式对局部折射率变化比基 HE11100更为敏感,气体分子的吸附会引起模间干涉光谱谐振波长的漂移。该传感器实现了NH3约为0.1×10-6的气体检测灵敏度响应,H2O蒸气检测灵敏度约为0.2×10-6,并且实现了传感器的快速恢复。2018年,Fu等[69]通过使用GO-ZnO薄膜代替石墨烯实现了低于10-6量级的超高灵敏度NH3气体传感器。实验结果表明GO-ZnO薄膜NH3气体分子的吸附有非常高的选择性,但缺点是恢复时间较长。此外,2014年,Mishra等[101]还报道了一种基于微纤维的石墨烯表面等离子体共振(SPR)传感器,用于检测NH3气体,如图7(b)所示。实验测试了对氨、硫化氢、氯、氢和氮等气体的传感能力。实验结果表明,随着腔室中气体浓度的增加,谐振波长发生红移。PMMA/rGO复合薄膜具有更高的传感灵敏度,并且对氨气更为敏感。

图 6. 基于石墨烯的微光纤气体传感器。(a)光强检测型气体传感器用于丙酮气体传感;(b)干涉解调型气体传感器用于氨气传感;(c)石墨烯包裹微光纤氨气传感器;(d) GO包裹微光纤布拉格光栅NO2传感器[59,62,97-98]

Fig. 6. Graphene-based microfiber gas sensors. (a) Light intensity detection type gas sensor used for acetone gas sensing; (b) interference demodulation type gas sensor used for ammonia gas sensing; (c) graphene coated microfiber ammonia sensor; (d) GO coated microfiber Bragg grating NO2 sensor[59,62,97-98]

下载图片 查看所有图片

受光学干涉的光谱分辨率和无源器件的线性损耗限制,基于石墨烯的光纤气体传感器的分辨率限制在百万分之一量级,很难进一步提高分辨率。利用高品质因子的谐振腔可以有效地改善干涉光谱分辨率。2016年,Yu等[102]通过构建GO沉积的微光纤结谐振器实现了气体传感,其结构图如图7(c)所示。在这项工作中,GO薄膜覆盖了整个微纤维谐振器,限制了谐振腔的品质因子。在未来的研究中,通过优化石墨烯覆盖区域[19],可以进一步提高分辨率和检测限。在2017年,基于石墨烯增强布里渊散射,研究者们实现了微光纤集成回音壁谐振腔气体传感器[103],通过光机械谐振器中的“电子-声子-光子”相互作用的全新传感机理,在传感性能上实现了新的提升。图7(d)显示了结构设计和传感结果,对NH3气体检测的灵敏度高达10-9,与世界一流的传感指标相当[104-105]

图 7. 复合结构气体传感器。(a)多模干涉传感器;(b)SPR气体传感器;(c)光纤结谐振传感器;(d)布里渊回音壁谐振腔气体传感器[19,101-103]

Fig. 7. Gas sensors with composite structures. (a) Multimode interference sensor; (b) SPR gas sensor; (c) fiber knot resonant sensor; (d) gas sensor with Brillouin whispering gallery mode cavity[19,101-103]

下载图片 查看所有图片

3.3 生化传感

除了气体传感,基于石墨烯的功能化光纤复合波导还能工作在液相环境,实现多样化的生化传感器件。由于石墨烯能够吸附各种分子,如重金属离子、有机分子和气体分子等。2015年,Girei等[106]将锥形光纤与石墨烯结合测量了水中乙醇溶液的体积分数,如图8(a)所示,传感探头是由石墨烯包裹熔融拉锥法制造的微光纤,然后分别涂覆石墨烯和GO作为敏感材料。图8(a)中同时给出锥形光纤涂覆的石墨烯和GO在可见光范围内的光谱图。在空气中,传感探头的光吸收强度很高,随着乙醇浓度的增加,光吸收强度逐渐降低。石墨烯和GO都具有敏感响应,并且具有相同的响应时间。针对石墨烯包裹的传感器探针,乙醇溶液的体积分数每改变1%,光吸收强度改变0.829%;针对GO包裹的传感器探针,乙醇溶液的体积分数每改变1%,光吸收强度改变1.330%,并具有更好的线性度。综合比较,GO是比石墨烯更好的乙醇浓度测量材料。

基于石墨烯的分子吸附特性,研究者们近年来提出许多光纤传感结构。2015年,Yao等[107]通过在D形微结构光子晶体光纤布拉格光栅(FBG)上覆盖石墨烯,提出并展示了一种新型血红细胞传感器。倏逝场从侧抛面透出,经石墨烯后得到显著增强。因此,该传感器的灵敏度得到进一步提高,其传感结构如图8(b)所示。同年,Sridevi等[108]提出了一种利用GO包裹光纤光栅的结构,实现了C反应蛋白(CRP)的精确检测。该传感器在尿素、肌酐、葡萄糖等干扰因素的存在下对CRP具有较高的特异性,检测限为0.01 mg/L,在0.05~100 mg/L的线性范围内表现出良好的性能。同样地,根据石墨烯对水分子的吸附特性,2015年,肖毅等[109]将还原氧化石墨烯沉积在D形光纤上制作出光纤湿度传感器。传感器对相对湿度变化能实现相关系数为98.2%的线性响应,相对湿度每改变1%,光功率改变0.31 dB,并且具有很好的可重复性。2016年,Gao等[110]将中空芯纤维的一部分拼接成单模光纤,然后将rGO涂覆在中空芯纤维的外表面上,实现湿度传感,该空芯纤维构成了检测湿度的FP腔,图8(c)展示了其传感结构。相比于传统的光纤生物传感器,由于石墨烯的分子吸附性质,石墨烯的折射率对外部分子吸附具有超敏感性,大大提高了传感器灵敏度。

除基于石墨烯分子吸附特性实现的光纤生化传感器外,基于石墨烯等离激元特性(SPR)的光纤生化传感器同样是生化传感领域的研究热点。为了提高传统光纤SPR生化传感器的灵敏度,研究者们引入石墨烯以增强对生物分子的吸附。理论研究表明,通过结合石墨烯传感层,所提出的SPR光纤生物传感器的灵敏度相比传统的SPR光纤传感器有很大提高[111-112]。利用石墨烯的表面等离子体特性,结合传统的SPR传感器结构,如光纤SPR[111,113]、光子晶体光纤SPR[112,114]可以实现各种生化传感器的设计。2015年,Fu等[111]提出金上石墨烯包裹光纤纤芯的生化传感结构,并探究了石墨烯层数对传感灵敏度的影响结构,如图8(d)所示。2016年,Zhang等[115]将金上石墨烯结构与D型光纤相结合,实现高灵敏度的单链DNA(ssDNA)传感器,如图8(e)所示。同年,Rifat等[116]通过将铜-石墨烯层作为敏感材料,结合光子晶体光纤,实现了5×10-5 RIU传感分辨率。2017年,Paul等[117]用石墨烯包裹光子晶体光纤,将传感分辨率提高到1.18×10-5 RIU。同年,Wang等[118]设计了银-石墨烯层作为敏感材料的双芯光子晶体光纤SPR生物传感器,将传感分辨率进一步提高到了1×10-6 RIU,结构如图8(f)所示。与传统的光纤SPR折射率传感器的传感结构相比,该结构具有更高的传感灵敏度和分辨率,后期采用一些特殊的光纤结构,如D形光子晶体光纤[112,119]、锥形光纤等,还可以进一步提高传感器的性能。

图 8. 基于石墨烯的光纤生化传感器。(a)微纳光纤乙醇传感器; (b) D形光纤血红细胞传感器; (c)空心光纤湿度传感器; (d)石墨烯包裹光纤纤芯的SPR传感结构示意图; (e)金上石墨烯贴附D形光纤的SPR传感结构示意图; (f)银-石墨烯包裹光子晶体光纤的SPR传感结构示意图[106-107,110-111,115,118]

Fig. 8. Graphene-based fiber biochemical sensors. (a) Micro-nanofiber ethanol sensor; (b) D-shaped fiber red blood cell sensor; (c) hollow fiber humidity sensor; (d) diagram of SPR sensing structure of graphene-encapsulated fiber core; (e) diagram of SPR sensing structure of graphene-on-gold attached D-shaped fiber; (f) diagram of SPR sensing structure of silver-graphene encapsulated photonic crystal fiber[106-107,110-111,115,118]

下载图片 查看所有图片

4 基于石墨烯的功能化光纤激光器和非线性器件

快速光纤激光器具有短脉冲宽度和高峰值功率,在超精密制造、医疗诊断、医疗、精密测量、天文检测以及材料加工等方面具有重要应用。调Q和锁模是实现脉冲激光的两种主要技术[120]。在模式锁定中,源于腔模干涉的随机相位关系是固定的,产生的单脉冲[120]的典型脉冲宽度范围从几十皮秒到十几飞秒,峰值功率可达1012 W,并且重复率对应于空腔往返时间的倒数[121]。在锁模过程中,需要精确平衡许多方面的因素,包括腔内部件的色散和非线性特性,以实现稳定的操作[120-121]。调Q是对激光腔品质因数Q的调制,而Q是存储在有源介质中的能量与每个振荡周期的损耗之间的比率[120],因此,谐振腔损耗越低,Q越高。在调Q激光器中抽运有源介质,但激光最初被低Q因子阻止;然后,当高Q因子允许激光发射时,存储的能量在脉冲中释放,脉冲宽度范围从微秒到纳秒,峰值功率可达106 W。这两种技术分别包含被动和主动方法:被动方法通过将覆盖多个激光波长的宽带可饱和吸收体置于谐振腔中来实现自调制;主动方法需要具有外部控制的宽带光调制器(例如:电光调制器)。石墨烯因为其独特的光学性质,如平面形态引起的低散射损耗、独特的电子带结构、波长无关的吸收、超快电子弛豫时间、可调的调制深度和宽带可调性,成为研究超快和超宽带激光光子学的热点,被广泛应用于主动和被动的调Q锁模激光器。

4.1 光纤锁模激光器

2009—2010年,新加坡国立大学和剑桥大学先后实现了石墨烯的超快锁模激光器[63-64]。同年,Popa等[122-123]报道了一种由石墨烯作为可饱和吸收体(GSA)的锁模光纤激光器,通过匹配腔体内掺铒(EDF)光纤提供的正色散和单模光纤(SMF)提供的负色散,得到光谱宽度为15.6 nm、脉冲宽度约为174 fs的超短脉冲输出。从此,对基于石墨烯的锁模激光器特别是光纤锁模激光器研究成为热点,先后制备出各种各样的锁模激光器,输出脉冲突破百飞秒级,重复频率一般在兆赫兹级,并已发展到多个波段[124-126]

2014年,Fu等[127]采用石墨烯作为可饱和吸收体,通过光纤端面贴敷石墨烯的方式并通过实验证明了三种主要光纤激光器(即YDFL、EDFL和THDFL,中心波长分别为1035,1564,1908 nm)的被动锁模激光输出,其器件结构、频谱和脉冲如图9(a)所示。宽带光谱覆盖范围为1~2 μm。2016年,Zhu等[128]报道了由多层石墨烯实现2.78 μm的锁模脉冲,验证了石墨烯在3 μm区域的显著可饱和吸收能力。2017年,王小发等[129]报道了一种基于石墨烯可饱和吸收体的纳秒锁模掺铥光纤激光器,利用三层石墨烯薄膜作为可饱和吸收体实现了被动锁模。这些实验结果展示了石墨烯的宽带(高达2000 nm)工作特性。2016年,Zapata等[130]报道了一种基于沉积在侧抛D形光纤上的CVD单层石墨烯与倏逝光场的相互作用来实现高效可饱和吸收体的方法。这种方式提高了光与物质相互作用的效率,将纤芯与石墨烯的距离控制在0~1 μm之间,将光与石墨烯相互作用长度控制在10~25 mm之间,使TE和TM辐射之间的极化相对消光比与被动锁模优化联系起来。在EDFL中,极化相对消光比高于85%的样品脉冲宽度短于300 fs。在较高的极化相对消光比为96%时获得了256 fs的最短脉冲宽度,这是使用CVD单层石墨烯在文献中报道的最短脉冲,系统结构如图9(b)所示。为了进一步提高光与石墨烯的相互作用效率,2014年,Zhao等[131]通过使用基于微纤维的石墨烯可饱和吸收体在掺镱光纤激光器(YDFL)中产生了双波长矩形脉冲。2016年,Liu等[132]利用石墨烯包裹微光纤可饱和吸收体来产生超快脉冲,如图9(c)所示。2018年,Wang等[133]报道了一种相似的结构,该结构基于石墨烯覆盖微纤维的被动锁模TDFL,通过将抽运功率从1.25 W增加到2.15 W,TDFL表现出不同的工作状态,包括连续波(CW)、传统孤子模式锁定(CSML)、多孤子模式锁定(MSML)、转换期和类似噪声的模式锁定(NLML)。该器件的全光纤结构允许功率有可扩展性,因此具有高功率锁模操作的潜力。与上述技术相比,所提出的全表面包裹石墨烯技术可以保证光与石墨烯相互作用有着更高的效率,但是微光纤的直径过大会降低光与石墨烯相互作用的强度,直径过小会导致微光纤的表面粗糙,进而带来更大的损耗。

图 9. 光纤锁模激光器。(a)端面贴附型光纤锁模激光器;(b)D形光纤锁模激光器;(c)微纳光纤锁模激光器;(d)石墨烯电光调制器主动锁模激光器[65,127,130,132]

Fig. 9. Fiber mode locked lasers. (a) End-face attached fiber mode locked lasers; (b) D-shaped fiber mode locked lasers; (c) micro-nanofiber mode locked lasers; (d) active mode locked lasers based on graphene electro-optic modulators[65,127,130,132]

下载图片 查看所有图片

主动锁模激光器具有电可控脉冲重复率的能力,相比于被动锁模激光器拥有更好的灵活性。基于石墨烯的电光调制器具有带宽可操作和超快速度的独特优点,适用于各种光电应用中的光调制。2018年,Bogusławski等[65]首次报道了具有基于石墨烯的电光调制器的主动锁模激光器,器件结构如图9(d)所示。有源锁模技术与腔内非线性脉冲缩短效应相结合,调制器设计为简单的多层结构,石墨烯用作有源层。仅使用单层石墨烯,在低驱动电压下实现约2%的调制深度,调制速度在兆赫兹范围内,可以产生的脉冲能量为844 pJ,发出接近傅里叶变换极限的1.44 ps脉冲。

4.2 光纤调Q激光器

除了锁模激光,石墨烯还可以被用来产生调Q激光。2010年,厦门大学蔡志平教授课题组[134]Optics Letters上报道了基于石墨烯的光纤激光调Q实验;次年,剑桥大学Popa等[123]也在Applied Physics Letters上报道了一种由石墨烯作为可饱和吸收体的调Q光纤激光器。石墨烯的宽带吸收特性使其能够在32 nm范围内进行调Q操作,仅受可调谐滤波器的限制,而不受石墨烯本身的限制。实现脉冲能量约为40 nJ、脉冲宽度约为2 μs的激光脉冲输出。随后,石墨烯调Q激光器也得到长足发展,波段范围得到显著扩大,光学结构和脉冲表现也被不断优化[135-137]

2014年,Tang等[135]报道了高功率TDFL被动调Q激光器,结构如图10(a)所示。通过操纵腔内激光束尺寸和增加抽运比,使激光器的平均输出功率为5.2 W,激光脉冲能量可达18 μJ,与主动调Q光纤激光器相当。最窄的脉冲宽度为320 ns,脉冲重复率可通过改变抽运功率从几万赫兹调整到28×104 Hz。2017年,Huang等[138]报道了一种基于石墨烯的输出偏振可调的调Q光纤激光器,脉冲宽度范围为42.6~5.1 μs,脉冲重复频率范围为22.3~32.7 kHz。在最大入射抽运功率下,脉冲能量为7.73 μJ,输出平均功率可达到253 mW。同年,Yao等[139]报道了基于石墨烯被动调Q的窄线宽分布反馈式布拉格光栅光纤激光器,结构如图10(b)所示,可以通过调节抽运功率产生和控制高质量脉冲。

2017年,Li等[140]首次报道了基于石墨烯电光调制器(GEOM)的主动调Q光纤激光器,结构如图10(c)所示,通过单个GEOM生成了1.55 μm电信窗口(高达61 nJ)和2 μm中红外区域(高达123 nJ)的大能量脉冲;次年,Li等[141]在此基础上通过将GEOM插入两个光纤腔的公共臂中,实现了两个激光腔的同时调Q操作。

图 10. 光纤调Q激光器。(a) TDFL被动调Q激光器;(b)分布反馈布拉格光栅光纤调Q激光器;(c) EDFL主动调Q光纤激光器[135,139-140]

Fig. 10. Fiber Q-switched lasers. (a) TDFL passive Q-switched laser; (b) Q-switched laser based on distributed feedback Bragg grating fiber; (c) EDFL active Q-switched fiber laser[135,139-140]

下载图片 查看所有图片

4.3 光纤非线性器件

石墨烯的原子厚度、无间隙狄拉克费米能带结构和超短的载流子弛豫时间使其成为光子集成器件应用最有希望的材料。重要的是,可主动调谐的石墨烯-波导集成的光电器件可以用于实现可调光电子器件,拓宽器件的应用范围,提高器件的灵活性。2014年,浙江大学童利民教授课题组Li等[32]提出了基于石墨烯包覆的微纤维全光调制器,如图11(a)所示,实现了38%的调制深度和仅受石墨烯的固有载流子弛豫时间限制的约2.2 ps的响应时间,通过搭建抽运-探测延时系统来进行全光调制,实现了对高斯脉冲200 GHz的最大调制速率;次年,Chen等[142]采用微光纤缠绕石墨烯的结构同样实现了全光调制器,实现了达7.5 dB的调制深度。2015年,冯秋燕等[143]进行了基于飞秒激光抽运的石墨烯包裹微光纤波导结构的级联四波混频研究。2015年,Gan等[144]同时利用石墨烯光学吸收和热调控性能,在石墨烯涂覆的微纤维(GMF)中,通过微纤维的倏逝场相互作用,有效地产生焦耳加热并随后加热微纤维,进而通过热光效应引起相当大的折射率变化,实现了全光纤移相器,为全光信号处理提供了新的解决方案。2017年,Li等[66]提出了一种石墨烯-光纤集成平台,并通过基于电加热方法调控石墨烯的费米-狄拉克分布来实现其非线性光学性质的操纵,如图11(b)所示。同年,杨翠红等[145]通过太赫兹区的电压调制石墨烯PN结观察到了不同的饱和吸收特性。2018年,Yao等[67]基于双层石墨烯异质结构的表面不对称性和紧密的等离子体场限制,利用本征强的二阶非线性极化能力进行差频以生成太赫兹等离激元,该异质结构通过单伏电压进行栅极控制,实现了可广泛调谐的太赫兹等离激元,首次实现了通信波段光源激发太赫兹等离激元,如图11(c)所示。同年,Yao等[68]Nature上报道了通过将栅极可调光导率的石墨烯与氮化硅微谐振器耦合,改变石墨烯费米能级,调制其二阶和更高阶的色散,实现了基于石墨烯的可调光频梳,如图11(d)所示。这些工作有助于构建用于主动可调谐多功能应用的微型和紧凑型石墨烯光纤集成器件。

图 11. 基于石墨烯的非线性器件。 (a)基于石墨烯的全光调制器;(b)电加热方法调控石墨烯的费米-狄拉克分布;(c) DFG等离激元激发;(d)栅极可调谐光频梳[32,66-68]

Fig. 11. Graphene-based nonlinear optical devices. (a) Graphene-based all-optical modulator; (b) electrical heating method to regulate Fermi-Dirac distribution of graphene; (c) DFG plasmon excitation; (d) gate tunable optical frequency comb[32,66-68]

下载图片 查看所有图片

5 结 束 语

回顾了基于石墨烯的光纤功能化激光器和传感器件的制备、测试和性能。基于石墨烯的光纤传感器近年来成为传感领域研究的热点,并已经在实际的应用中发挥了重要作用。由于能够高精度、高灵敏地实现物理量、气体和生物传感,石墨烯与光纤的结合是功能化光电子器件的研究趋势之一。在未来,通过更进一步研究高阶非线性特性[103],中红外范围到太赫兹区域的等离子体传感[16],声子激光[146]和奇异点(EP)增强[147]以及光纤直接融入石墨烯[148]等新原理、新设计和新技术,有望实现功能更为多样、性能更为强大的传感和激光器件,以服务光调制、光探测等多种需求。同时,针对目前分布式传感网络的热点研究,石墨烯的加入会带来整个传感网络灵敏度的提升。目前,基于光纤平台的石墨烯的电控制仍然具有挑战性,实现电可控的石墨烯光纤器件将进一步推进全光纤通信网络的发展,相信这也会成为接下来的一个热点研究方向。

参考文献

[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

[2] Geim AK, Novoselov KS. The rise of graphene[M] ∥Rodgers P. Nanoscience and Technology: A Collection of Reviews from Nature Journals. Singapore: World Scientific, 2010: 11- 19.

[3] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200.

[4] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183.

[5] Geim A K. Graphene: status and prospects[J]. Science, 2009, 324(5934): 1530-1534.

[6] Allen M J, Tung V C, Kaner R B. Honeycomb carbon: a review of graphene[J]. Chemical Reviews, 2010, 110(1): 132-145.

[7] Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9): 611-622.

[8] Young R J, Kinloch I A, Gong L, et al. The mechanics of graphene nanocomposites: a review[J]. Composites Science and Technology, 2012, 72(12): 1459-1476.

[9] Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907.

[10] . Graphene nanophotonics[J]. Science, 2013, 339(6122): 917-918.

[11] Zhang Y B, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, 438(7065): 201-204.

[12] Katsnelson M I, Novoselov K S, Geim A K. Chiral tunnelling and the Klein paradox in graphene[J]. Nature Physics, 2006, 2(9): 620-625.

[13] Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308.

[14] Das A, Pisana S, Chakraborty B, et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor[J]. Nature Nanotechnology, 2008, 3(4): 210-215.

[15] Schwierz F. Graphene transistors[J]. Nature Nanotechnology, 2010, 5(7): 487-496.

[16] Rodrigo D, Limaj O, Janner D, et al. Mid-infrared plasmonic biosensing with graphene[J]. Science, 2015, 349(6244): 165-168.

[17] Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics[J]. Nature Photonics, 2012, 6(11): 749-758.

[18] Liu M, Yin X B, Ulin-Avila E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64-67.

[19] Phare C T. Daniel Lee Y H, Cardenas J, et al. Graphene electro-optic modulator with 30 GHz bandwidth[J]. Nature Photonics, 2015, 9(8): 511-514.

[20] 莫军, 冯国英, 杨莫愁, 等. 基于石墨烯的宽带全光空间调制器[J]. 物理学报, 2018, 67(21): 214201.

    Mo J, Feng G Y, Yang M C, et al. Graphene-based broadband all-optical spatial modulator[J]. Acta Physica Sinica, 2018, 67(21): 214201.

[21] Koppens F H L, Mueller T, Avouris P, et al. . Photodetectors based on graphene, other two-dimensional materials and hybrid systems[J]. Nature Nanotechnology, 2014, 9(10): 780-793.

[22] Chakraborty S, Marshall O P, Folland T G, et al. Gain modulation by graphene plasmons in aperiodic lattice lasers[J]. Science, 2016, 351(6270): 246-248.

[23] 赵静, 王加贤, 邱伟彬, 等. 基于石墨烯的表面等离激元带阻滤波器[J]. 激光与光电子学进展, 2018, 55(1): 012401.

    Zhao J, Wang J X, Qiu W B, et al. Surface plasmonic polariton band-stop filters based on graphene[J]. Laser & Optoelectronics Progress, 2018, 55(1): 012401.

[24] Novoselov K S, Fal’ko V I, Colombo L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200.

[25] Sun Z P, Martinez A, Wang F. Optical modulators with 2D layered materials[J]. Nature Photonics, 2016, 10(4): 227-238.

[26] Martinez A, Sun Z P. Nanotube and graphene saturable absorbers for fibre lasers[J]. Nature Photonics, 2013, 7(11): 842-845.

[27] Mueller T, Xia F N, Avouris P. Graphene photodetectors for high-speed optical communications[J]. Nature Photonics, 2010, 4(5): 297-301.

[28] Hill E W, Vijayaragahvan A, Novoselov K. Graphene sensors[J]. IEEE Sensors Journal, 2011, 11(12): 3161-3170.

[29] Liu Y X, Dong X C, Chen P. Biological and chemical sensors based on graphene materials[J]. Chemical Society Reviews, 2012, 41(6): 2283-2307.

[30] Yavari F, Koratkar N. Graphene-based chemical sensors[J]. The Journal of Physical Chemistry Letters, 2012, 3(13): 1746-1753.

[31] Loh K P, Bao Q L, Eda G, et al. Graphene oxide as a chemically tunable platform for optical applications[J]. Nature Chemistry, 2010, 2(12): 1015-1024.

[32] Li W, Chen B G, Meng C, et al. Ultrafast all-optical graphene modulator[J]. Nano Letters, 2014, 14(2): 955-959.

[33] Tong L M, Gattass R R, Ashcom J B, et al. Subwavelength-diameter silica wires for low-loss optical wave guiding[J]. Nature, 2003, 426(6968): 816-819.

[34] Hoffmann P, Dutoit B, Salathé R P. Comparison of mechanically drawn and protection layer chemically etched optical fiber tips[J]. Ultramicroscopy, 1995, 61: 165-170.

[35] Kou J L, Ding M, Feng J, et al. Microfiber-based Bragg gratings for sensing applications: a review[J]. Sensors, 2012, 12(7): 8861-8876.

[36] Lou J Y, Wang Y P, Tong L M. Microfiber optical sensors: a review[J]. Sensors, 2014, 14(4): 5823-5844.

[37] Xu Y X, Fang W, Tong L M. Real-time control of micro/nanofiber waist diameter with ultrahigh accuracy and precision[J]. Optics Express, 2017, 25(9): 10434-10440.

[38] Chen X F, Zhou K M, Zhang L, et al. Simultaneous measurement of temperature and external refractive index by use of a hybrid grating in D fiber with enhanced sensitivity by HF etching[J]. Applied Optics, 2005, 44(2): 178-182.

[39] Mayorov A S, Gorbachev R V, Morozov S V, et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature[J]. Nano Letters, 2011, 11(6): 2396-2399.

[40] Zhao S, Xie S C, Zhao Z, et al. Green and high-efficiency production of graphene by tannic acid-assisted exfoliation of graphite in water[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(6): 7652-7661.

[41] 平蕴杰, 龚佑宁, 潘春旭. 电化学剥离制备石墨烯及其光电特性研究进展[J]. 中国激光, 2017, 44(7): 0703007.

    Ping Y J, Gong Y N, Pan C X. Research progress in preparation of graphene from electrochemical exfoliation and its optoelectronic characteristics[J]. Chinese Journal of Lasers, 2017, 44(7): 0703007.

[42] Moon J S, Curtis D, Hu M, et al. Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates[J]. IEEE Electron Device Letters, 2009, 30(6): 650-652.

[43] Compton O C, Nguyen S T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials[J]. Small, 2010, 6(6): 711-723.

[44] Guo S J, Dong S J. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications[J]. Chemical Society Reviews, 2011, 40(5): 2644-2672.

[45] de Heer W A, Berger C, Wu X S, et al. . Epitaxial graphene electronic structure and transport[J]. Journal of Physics D: Applied Physics, 2010, 43(37): 374007.

[46] Zhou H L, Yu W J, Liu L X, et al. Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene[J]. Nature Communications, 2013, 4: 2096.

[47] 杨云畅, 武斌, 刘云圻. 双层石墨烯的化学气相沉积法制备及其光电器件[J]. 物理学报, 2017, 66(21): 218101.

    Yang Y C, Wu B, Liu Y Q. Synthesis of bilayer graphene via chemical vapor deposition and its optoelectronic devices[J]. Acta Physica Sinica, 2017, 66(21): 218101.

[48] 王文荣, 周玉修, 李铁, 等. 高质量大面积石墨烯的化学气相沉积制备方法研究[J]. 物理学报, 2012, 61(3): 038702.

    Wang W R, Zhou Y X, Li T, et al. Research on synthesis of high-quality and large-scale graphene films by chemical vapor deposition[J]. Acta Physica Sinica, 2012, 61(3): 038702.

[49] Cai J M, Ruffieux P, Jaafar R, et al. Atomically precise bottom-up fabrication of graphene nanoribbons[J]. Nature, 2010, 466(7305): 470-473.

[50] Yan X, Cui X, Li B S, et al. Large, solution-processable graphene quantum dots as light absorbers for photovoltaics[J]. Nano Letters, 2010, 10(5): 1869-1873.

[51] Brodie B C. On the atomic weight of graphite[J]. Philosophical Transactions of the Royal Society of London, 1859, 149: 249- 259.

[52] Staudenmaier L. Verfahren zur darstellung der graphitsäure[J]. Berichte der Deutschen Chemischen Gesellschaft, 1898, 31( 2): 1481- 1487.

[53] Hummers W S. Jr, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339.

[54] Chen J, Yao B W, Li C, et al. An improved Hummers method for eco-friendly synthesis of graphene oxide[J]. Carbon, 2013, 64: 225-229.

[55] 黄乐旭, 陈远富, 李萍剑, 等. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响[J]. 物理学报, 2012, 61(15): 156103.

    Huang L X, Chen Y F, Li P J, et al. Effects of preparation temperature of graphite oxide on the structure of graphite and electrochemical properties of graphene-based lithium-ion batteries[J]. Acta Physica Sinica, 2012, 61(15): 156103.

[56] Alam S N, Sharma N, Kumar L. Synthesis of graphene oxide (GO) by modified Hummers method and its thermal reduction to obtain reduced graphene oxide (rGO)[J]. Graphene, 2017, 6(1): 1-18.

[57] Wang H B, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications[J]. ACS Catalysis, 2012, 2(5): 781-794.

[58] Kong X K, Chen C L, Chen Q W. Doped graphene for metal-free catalysis[J]. Chemical Society Reviews, 2014, 43(8): 2841-2857.

[59] Yao B C, Wu Y, Cheng Y, et al. All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide[J]. Sensors and Actuators B: Chemical, 2014, 194: 142-148.

[60] Yao BC, WuY, ChenY, et al. Graphene-based microfiber gas sensor[J]. Proceedings of SPIE, 2012, 8421: 8421CD.

[61] Yao B C, Wu Y, Gong Y, et al. A highly sensitive and fast response molecular sensor based on graphene coated microfiber[J]. Proceedings of SPIE, 2012, 8421: 842186.

[62] Wu Y, Yao B C, Cheng Y, et al. Hybrid graphene-microfiber waveguide for chemical gas sensing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(1): 49-54.

[63] Bao Q L, Zhang H, Wang Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Advanced Functional Materials, 2009, 19(19): 3077-3083.

[64] Sun Z P, Hasan T, Torrisi F, et al. Graphene mode-locked ultrafast laser[J]. ACS Nano, 2010, 4(2): 803-810.

[65] Bogusławski J, Wang Y D, Xue H, et al. Graphene actively mode-locked lasers[J]. Advanced Functional Materials, 2018, 28(28): 1801539.

[66] Li C, Chen J H, Wang W S, et al. Graphene fibers: manipulation of nonlinear optical properties of graphene bonded fiber devices by thermally engineering Fermi-Dirac distribution[J]. Advanced Optical Materials, 2017, 5(21): 1700630.

[67] Yao B C, Liu Y, Huang S W, et al. Broadband gate-tunable terahertz plasmons in graphene heterostructures[J]. Nature Photonics, 2018, 12(1): 22-28.

[68] Yao B C, Huang S W, Liu Y, et al. Gate-tunable frequency combs in graphene-nitride microresonators[J]. Nature, 2018, 558(7710): 410-414.

[69] Fu H W, Jiang Y H, Ding J J, et al. Zinc oxide nanoparticle incorporated graphene oxide as sensing coating for interferometric optical microfiber for ammonia gas detection[J]. Sensors and Actuators B: Chemical, 2018, 254: 239-247.

[70] Wu Y, Yao B C, Cheng Y, et al. Highly sensitive gas sensor based on graphene/microfiber hybrid waveguide with Mach-Zehnder interferometer[J]. Proceedings of SPIE, 2014, 9157: 915747.

[71] Yao B C, Wu Y, Zhang A Q, et al. Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing[J]. Optics Express, 2014, 22(23): 28154-28162.

[72] Yao BC, WuY, Zhang AQ, et al. Graphene based surface plasmonics in microfiber multimode interferometer for gas sensing[C]∥Advanced Photonics, July 27-31, 2014, Barcelona Spain 2014. Washington, D. C.: OSA, 2014: SeW2C. 4.

[73] Yao B C, Rao Y J, Wang Z N, et al. Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers[J]. Scientific Reports, 2016, 5: 18526.

[74] Yao BC, Rao YJ, Wang ZN, et al. Broadly-tunable pulse generation in cavity-free graphene random fiber lasers[C]∥Conference on Lasers and Electro-Optics, June 5-10, 2016, San Jose, California, United States. Washington, D. C.: OSA, 2016: FM3D. 5.

[75] Li L, Feng Z Y, Qiao X G, et al. Ultrahigh sensitive temperature sensor based on Fabry-Perot interference assisted by a graphene diaphragm[J]. IEEE Sensors Journal, 2015, 15(1): 505-509.

[76] Zhang J, Liao G Z, Jin S S, et al. All-fiber-optic temperature sensor based on reduced graphene oxide[J]. Laser Physics Letters, 2014, 11(3): 035901.

[77] Li C, Liu Q W, Peng X B, et al. Analyzing the temperature sensitivity of Fabry-Perot sensor using multilayer graphene diaphragm[J]. Optics Express, 2015, 23(21): 27494-27502.

[78] Lin W W. Fiber-optic current sensor[J]. Optical Engineering, 2003, 42(4): 896-897.

[79] Ning Y N, Wang Z P, Palmer A W, et al. Recent progress in optical current sensing techniques[J]. Review of Scientific Instruments, 1995, 66(5): 3097-3111.

[80] Zheng BC, Yan SC, XuF, et al. High-sensitivity optical fiber current sensor based on suspended graphene membrane[C]∥International Photonics and OptoElectronics, June 16-19, 2015, Wuhan, China. Washington, D. C.: OSA, 2015: OT3B. 6.

[81] Zheng B C, Yan S C, Chen J H, et al. Miniature optical fiber current sensor based on a graphene membrane[J]. Laser & Photonics Reviews, 2015, 9(5): 517-522.

[82] Yan SC, Zheng BC, XuF, et al. A microfiber-graphene-integrated microresonator for current sensing[C]∥International Photonics and Opto Electronics, June 16-19, 2015, Wuhan, China. Washington, D. C.: OSA, 2015: OW2C. 1.

[83] Yan S C, Zheng B C, Chen J H, et al. Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator[J]. Applied Physics Letters, 2015, 107(5): 053502.

[84] Tan Y C, Tou Z Q, Chow K K, et al. Graphene-deposited photonic crystal fibers for continuous refractive index sensing applications[J]. Optics Express, 2015, 23(24): 31286-31294.

[85] 黄梦, 顾昌晟, 孙兵, 等. 基于石墨烯涂覆倾斜光纤光栅的折射率传感[J]. 中国激光, 2017, 44(12): 1210001.

    Huang M, Gu C S, Sun B, et al. Refractive index sensor based on tilted-fiber Bragg grating coated with graphene[J]. Chinese Journal of Lasers, 2017, 44(12): 1210001.

[86] Zheng BC, XuF. A compact fiber magnetic sensor based on graphene NEMS[C]∥Asia Communications and Photonics Conference 2015, November 19-23, 2015, HongKong, China Washington, D. C.: OSA, 2015: AM4A. 3.

[87] Liu ZY, Yan SC, Lu ZD, et al. A fiber-optic magnetometer based on graphene NEMS using superparamagnetic nanoparticles[C]∥CLEO Pacific Rim Conference, July 29-August 3, 2018, HongKong, China. Washington, D. C.: OSA, 2018: W2A. 76.

[88] Liu Z Y, Cao H Q, Xu F. Fiber-optic Lorentz force magnetometer based on a gold-graphene composite membrane[J]. Applied Physics Letters, 2018, 112(20): 203504.

[89] Ma J, Jin W, Ho H L. A fiber-tip Fabry-Perot pressure sensor with graphene diaphragm[J]. Proceedings of SPIE, 2012, 8421: 84211C.

[90] Dong N N, Wang S M, Jiang L, et al. Pressure and temperature sensor based on graphene diaphragm and fiber Bragg gratings[J]. IEEE Photonics Technology Letters, 2018, 30(5): 431-434.

[91] 葛益娴, 张鹏, 赵伟绩. 基于石墨烯薄膜的光纤微压传感器的设计[J]. 半导体光电, 2018, 39(1): 37-41.

    Ge Y X, Zhang P, Zhao W J. Design of micro-pressure sensor based on graphene diaphragm[J]. Semiconductor Optoelectronics, 2018, 39(1): 37-41.

[92] Zhao Y, Li X G, Zhou X, et al. Review on the graphene based optical fiber chemical and biological sensors[J]. Sensors and Actuators B: Chemical, 2016, 231: 324-340.

[93] Hernaez M, Zamarreño C, Melendi-Espina S, et al. Optical fibre sensors using graphene-based materials: a review[J]. Sensors, 2017, 17(12): 155.

[94] Shivananju B N, Yu W Z, Liu Y, et al. The roadmap of graphene-based optical biochemical sensors[J]. Advanced Functional Materials, 2017, 27(19): 1603918.

[95] 彭星玲, 李兵, 李玉龙. 微纳光纤布拉格光栅折射率与浓度传感器研究进展[J]. 激光与光电子学进展, 2018, 55(12): 120010.

    Peng X L, Li B, Li Y L. Research progress of refractive index and concentration sensors based on micro-nanofiber Bragg grating[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120010.

[96] Wu Y, Yao B C, Zhang A Q, et al. Graphene-based D-shaped fiber multicore mode interferometer for chemical gas sensing[J]. Optics Letters, 2014, 39(20): 6030-6033.

[97] Wu Y, Yao B C, Zhang A Q, et al. Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing[J]. Optics Letters, 2014, 39(5): 1235-1237.

[98] Sridevi S, Vasu K S, Bhat N, et al. Ultra sensitive NO2 gas detection using the reduced graphene oxide coated etched fiber Bragg gratings[J]. Sensors and Actuators B: Chemical, 2016, 223: 481-486.

[99] Zhang A Q, Wu Y, Yao B C, et al. Optimization study on graphene-coated microfiber Bragg grating structures for ammonia gas sensing[J]. Photonic Sensors, 2015, 5(1): 84-90.

[100] Sun Q Z, Luo H P, Luo H B, et al. Multimode microfiber interferometer for dual-parameters sensing assisted by Fresnel reflection[J]. Optics Express, 2015, 23(10): 12777-12783.

[101] Mishra S K, Tripathi S N, Choudhary V, et al. SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization[J]. Sensors and Actuators B: Chemical, 2014, 199: 190-200.

[102] Yu C B, Wu Y, Liu X L, et al. Graphene oxide deposited microfiber knot resonator for gas sensing[J]. Optical Materials Express, 2016, 6(3): 727-733.

[103] Yao B C, Yu C B, Wu Y, et al. Graphene-enhanced Brillouin optomechanical microresonator for ultrasensitive gas detection[J]. Nano Letters, 2017, 17(8): 4996-5002.

[104] Lehner P, Staudinger C, Borisov S M, et al. Ultra-sensitive optical oxygen sensors for characterization of nearly anoxic systems[J]. Nature Communications, 2014, 5: 4460.

[105] Jin W, Cao Y C, Yang F, et al. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range[J]. Nature Communications, 2015, 6: 6767.

[106] Girei S H, Shabaneh A A, Ngee-Lim H, et al. Tapered optical fiber coated with graphene based nanomaterials for measurement of ethanol concentrations in water[J]. Optical Review, 2015, 22(3): 385-392.

[107] Yao BC, WuY, Webb DJ, et al. Graphene-based D-shaped polymer FBG for highly sensitive erythrocyte detection[C]∥Frontiers in Optics 2015, October 18-22, 2015, San Jose, California, United States. Washington, D. C.: OSA, 2015: FTh2E. 3.

[108] Sridevi S, Vasu K S, Asokan S, et al. Sensitive detection of C-reactive protein using optical fiber Bragg gratings[J]. Biosensors and Bioelectronics, 2015, 65: 251-256.

[109] 肖毅, 张军, 蔡祥, 等. 基于石墨烯的光纤湿度传感研究[J]. 光学学报, 2015, 35(4): 0406005.

    Xiao Y, Zhang J, Cai X, et al. Fiber-optic humidity sensing based on graphene[J]. Acta Optica Sinica, 2015, 35(4): 0406005.

[110] Gao R, Lu D F, Cheng J, et al. Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide[J]. Sensors and Actuators B: Chemical, 2016, 222: 618-624.

[111] Fu H Y, Zhang S W, Chen H, et al. Graphene enhances the sensitivity of fiber-optic surface plasmon resonance biosensor[J]. IEEE Sensors Journal, 2015, 15(10): 5478-5482.

[112] Dash J N, Jha R. On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance[J]. Plasmonics, 2015, 10(5): 1123-1131.

[113] Kim J A, Hwang T, Dugasani S R, et al. Graphene based fiber optic surface plasmon resonance for bio-chemical sensor applications[J]. Sensors and Actuators B: Chemical, 2013, 187: 426-433.

[114] Dash J N, Jha R. Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance[J]. IEEE Photonics Technology Letters, 2014, 26(11): 1092-1095.

[115] Zhang N MY, Li KW, Shum PP, et al. Graphene enhanced surface plasmon resonance fiber-optic biosensor[C]∥Conference on Lasers and Electro-Optics, June 5-10, 2016, San Jose, California, United States. Washington, D. C.: OSA, 2016: SM4P. 4.

[116] Rifat A A, Mahdiraji G A, Ahmed R, et al. Copper-graphene-based photonic crystal fiber plasmonic biosensor[J]. IEEE Photonics Journal, 2016, 8(1): 4800408.

[117] Paul AK, Sarkar AK, Razzak S M A. Graphene coated photonic crystal fiber biosensor based on surface plasmon resonance[C]∥2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), December 21-23, 2017. Dhaka, Bangladesh. New York: IEEE, 2017: 856- 859.

[118] Wang F M, Sun Z J, Liu C, et al. A highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance biosensor with silver-graphene layer[J]. Plasmonics, 2017, 12(6): 1847-1853.

[119] Tong K, Wang F C, Wang M T, et al. D-shaped photonic crystal fiber biosensor based on silver-graphene[J]. Optik, 2018, 168: 467-474.

[120] SveltoO, Hanna DC. Principles of lasers[M]. New York: Plenum Press, 1998.

[121] Keller U, Weingarten K J, Kartner F X, et al. Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2(3): 435-453.

[122] Popa D, Sun Z, Torrisi F, et al. Sub 200 fs pulse generation from a graphene mode-locked fiber laser[J]. Applied Physics Letters, 2010, 97(20): 203106.

[123] Popa D, Sun Z, Hasan T, et al. Graphene Q-switched, tunable fiber laser[J]. Applied Physics Letters, 2011, 98(7): 073106.

[124] Zhang H, Tang D Y, Knize R J, et al. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser[J]. Applied Physics Letters, 2010, 96(11): 111112.

[125] Liu Z B, He X Y, Wang D N. Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution[J]. Optics Letters, 2011, 36(16): 3024-3026.

[126] Cui Y D, Liu X M. Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons[J]. Optics Express, 2013, 21(16): 18969-18974.

[127] Fu B, Hua Y, Xiao X S, et al. Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2 μm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 411-415.

[128] Zhu G W, Zhu X S, Wang F Q, et al. Graphene mode-locked fiber laser at 2.8 μm[J]. IEEE Photonics Technology Letters, 2016, 28(1): 7-10.

[129] 王小发, 张俊红, 高子叶, 等. 基于石墨烯可饱和吸收体的纳秒锁模掺铥光纤激光器[J]. 物理学报, 2017, 66(11): 114209.

    Wang X F, Zhang J H, Gao Z Y, et al. Nanosecond mode-locked Tm-doped fiber laser based on graphene saturable absorber[J]. Acta Physica Sinica, 2017, 66(11): 114209.

[130] Zapata J D, Steinberg D. Saito L A M, et al. Efficient graphene saturable absorbers on D-shaped optical fiber for ultrashort pulse generation[J]. Scientific Reports, 2016, 6: 20644.

[131] Zhao N, Liu M, Liu H, et al. Dual-wavelength rectangular pulse Yb-doped fiber laser using a microfiber-based graphene saturable absorber[J]. Optics Express, 2014, 22(9): 10906-10913.

[132] Liu X M, Yang H R, Cui Y D, et al. Graphene-clad microfibre saturable absorber for ultrafast fibre lasers[J]. Scientific Reports, 2016, 6: 26024.

[133] Wang X F, Zhang J H, Peng X L, et al. Generation and evolution of multiple operation states in passively mode-locked thulium-doped fiber laser by using a graphene-covered-microfiber[J]. Chinese Physics B, 2018, 27(8): 084215.

[134] Luo Z Q, Zhou M, Weng J, et al. Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser[J]. Optics Letters, 2010, 35(21): 3709-3711.

[135] Tang Y L, Yu X C, Li X H, et al. High-power thulium fiber laser Q switched with single-layer graphene[J]. Optics Letters, 2014, 39(3): 614-617.

[136] Choudhary A, Beecher S J, Dhingra S, et al. 456-mW graphene Q-switched Yb∶yttria waveguide laser by evanescent-field interaction[J]. Optics Letters, 2015, 40(9): 1912-1915.

[137] Liu S J, Zhu X S, Zhu G W, et al. Graphene Q-switched Ho 3+-doped ZBLAN fiber laser at 1190 nm [J]. Optics Letters, 2015, 40(2): 147-150.

[138] Huang B, Yi J, Du L, et al. Graphene Q-switched vectorial fiber laser with switchable polarized output[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(1): 26-32.

[139] Yao B C, Rao Y J, Huang S W, et al. Graphene Q-switched distributed feedback fiber lasers with narrow linewidth approaching the transform limit[J]. Optics Express, 2017, 25(7): 8202-8211.

[140] Li D, Xue H, Qi M, et al. Graphene actively Q-switched lasers[J]. 2D Materials, 2017, 4(2): 025095.

[141] Li D, Xue H, Wang Y D, et al. Active synchronization and modulation of fiber lasers with a graphene electro-optic modulator[J]. Optics Letters, 2018, 43(15): 3497-3500.

[142] Chen J H, Zheng B C, Shao G H, et al. An all-optical modulator based on a stereo graphene-microfiber structure[J]. Light: Science & Applications, 2015, 4(12): e360.

[143] 冯秋燕, 姚佰承, 周金浩, 等. 基于飞秒激光抽运的石墨烯包裹微光纤波导结构的级联四波混频研究[J]. 物理学报, 2015, 64(18): 184214.

    Feng Q Y, Yao B C, Zhou J H, et al. Four-wave-mixing generated by femto-second laser pumping based on graphene coated microfiber structure[J]. Acta Physica Sinica, 2015, 64(18): 184214.

[144] Gan X T, Zhao C Y, Wang Y D, et al. Graphene-assisted all-fiber phase shifter and switching[J]. Optica, 2015, 2(5): 468-471.

[145] 杨翠红, 王璐, 陈云云, 等. 电压调制的石墨烯PN结在太赫兹区的光吸收特性[J]. 激光与光电子学进展, 2017, 54(11): 112601.

    Yang C H, Wang L, Chen Y Y, et al. Optical absorption property of graphene PN junction modulated by voltage in terahertz region[J]. Laser & Optoelectronics Progress, 2017, 54(11): 112601.

[146] Zhang J, Peng B, Özdemir Ş K, et al. A phonon laser operating at an exceptional point[J]. Nature Photonics, 2018, 12(8): 479-484.

[147] Chen W J, Özdemir Ş K, Zhao G M, et al. Exceptional points enhance sensing in an optical microcavity[J]. Nature, 2017, 548(7666): 192-196.

[148] 毕卫红, 马敬云, 杨凯丽, 等. 石墨烯光纤及其应用[J]. 激光与光电子学进展, 2017, 54(4): 040002.

    Bi W H, Ma J Y, Yang K L, et al. Graphene-based optical fiber and its applications[J]. Laser & Optoelectronics Progress, 2017, 54(4): 040002.

谭腾, 袁中野, 陈远富, 姚佰承. 基于石墨烯的光纤功能化传感器件和激光器件[J]. 激光与光电子学进展, 2019, 56(17): 170613. Teng Tan, Zhongye Yuan, Yuanfu Chen, Baicheng Yao. Graphene-Based Fiber Functional Sensors and Laser Devices[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170613.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!