光散射学报, 2019, 31 (1): 38, 网络出版: 2019-04-16  

钠钛硅酸盐精细结构及其拉曼活性分子振动的量子化学从头计算研究

Quantum Chemistry ab initio Study on Fine Structure and Raman-Active Molecular Vibration of Sodium Titanosilicates
作者单位
省部共建高品质特殊钢冶金与制备国家重点实验室, 上海市钢铁冶金新技术开发应用重点实验室材料科学与工程学院 上海大学, 上海 200072, 中国
摘要
本文选取了Na2O-TiO2-SiO2体系不同成分的团簇模型, 采用量子化学从头计算方法计算其拉曼振动频率和相对散射活性。本文分析了钛硅酸盐中硅氧四面体([SiO4])的局域环境变化对特征拉曼振动频率的影响, 对硅氧四面体应力指数进行了拓展与修正, 研究表明钠钛硅酸盐拉曼光谱高波数区硅氧四面体非桥氧对称伸缩振动频率随相应的硅氧四面体应力指数的增加而增加, 并表现出良好的线性相关性。采用拉曼光谱和29Si NMR对Na2TiSiO5玻璃进行解谱、定量分析和比较, 并认为869 cm-1处的谱峰归属为Q1(Si)中非桥氧的对称伸缩振动。
Abstract
Raman vibrational wavenumber and scattering activity of the sodium titanosilicates with various compositions were calculated by quantum chemistry ab initio calculation method.The effect of the local microscopic environment of the silicon-oxygen tetrahedron(SiO4) on the vibrational Raman wavenumbers was studied.Stress index of tetrahedron(SIT) was promoted and modifieded to analyze the symmetric stretching vibrational wavenumber of NBO(non-bridging oxygen), which appeared to increase linearly with the corresponding SIT in the high wavenumber range.Raman spectroscopy and 29Si NMR were applied to make the quantitative analysis of Na2TiSiO5 glass, and the spectral peak around 869 cm-1 was assigned to the symmetric stretching vibration of NBO of Q1 species of silicon-oxygen tetrahedron.
参考文献

[1] LOPES CB, COIMBRA J, OTERO M, et al.Uptake of Hg2+ from aqueous solutions by microporous titano- and zircono-silicates[J].J Quim Nova, 2008, 31: 321-325.

[2] DUTTA PK, SEVERANCE M.Photoelectron transfer in zeolite cages and its relevance to solar energy conversion[J].J Phys Chem Lett, 2011, 2: 467-476.

[3] KUZNICKI SM, BELL VA, NAIR S, et al.A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules[J].Nature, 2001, 412: 720-724.

[4] ORHAN E, ALBARICI VC, ESCOTE MT.A DFT rationalization of the room temperature photoluminescence of Li2TiSiO5[J].J Phys Chem Lett, 2004, 398(4): 330-335.

[5] YAO T H, HE S P, WU T.Molecular dynamics simulations of microstructural properties of CaO-SiO2-TiO2 fluorine-free slag systems[J].Iron-making Steelmaking, 2016: 1-8.

[6] MYSEN B O, VIRGO D, HARRISON W J, et al.Solubility mechanisms of H2O in silicate melts at high pressures and temperatures; a Raman spectroscopic study[J].Am Mineral, 1980, 65(9-10): 900-914.

[7] MCMILLAN P F, WOLFG H, POE B T.Vibrational spectroscopy of silicate liquids and glasses[J].Chem Geol, 1992, 96(3): 351-366.

[8] 尤静林, 蒋国昌, 徐匡迪.二硅酸钠晶体、玻璃及其熔体结构的拉曼光谱研究[J].光谱学与光谱分析, 2000, 20(6): 797-799.(YOU Jinglin, JIANG Guochang, XU Kuangdi.Spectroscopy and spectral analysis, 2000, 20(6): 797-799.)

[9] 吴永全, 蒋国昌, 尤静林, 等.非晶态硅酸盐微观结构的研究进展[J].硅酸盐学报, 2004, 32(1): 57-62.(WU Yongquan, JIANG Guochang, YOU Jinglin, et al.J Chin Ceram Soc, 2004, 32(1): 57-62.)

[10] RAO Bh V.The dual role of TiO2 in the K2O-TiO2-SiO2 glass[J].J Phys Chem Glasses, 1963(4): 22-34.

[11] DINGWELL D B.Shear viscosity of alkali and alkaline earth titanium silicate liquids[J].Am Mineral, 1992, 77(3-4): 270-274.

[12] DINGWELL DB.Density of some titanium-bearing silicate liquids and the compositional dependence of the partial molar volume of TiO2[J].Geochim Cosmochim Acta, 1992, 56(9): 3403-3407.

[13] DAGOUASSAT N, GARREAU I, SANNIER F, et al.Coordination chemistry of Ti(IV) in silicate glasses and melts: I.XAFS study of titanium coordination in oxide model compounds[J].Geochim Cosmochim Acta, 1996, 60(16): 3023-3038.

[14] FARGES F, BROWN G E, NAVROTSKY A.Coordination chemistry of Ti(IV) in silicate glasses and melts: II.Glasses at ambient temperature and pressure.International loans, bonds, and securities regulation.Sweet & Maxwell, 1996, 60(16): 3039-3053.

[15] FARGES F, JR, G.E.B.Coordination chemistry of titanium(IV) in silicate glasses and melts: IV.XANES studies of synthetic and natural volcanic glasses and tektites at ambient temperature and pressure[J].Geochim Cosmochim Acta, 1997, 61(9): 1863-1870.

[16] FARGES F, JR G E B, NAVROTSKY A.Coordination chemistry of Ti(IV) in silicate glasses and melts: III.Glasses and melts from ambient to high temperatures[J].Geochimi Cosmochim Acta, 1996, 60(16): 3055-3065.

[17] MYSEN B O, NEUVILLE D.Effect of Temperature and TiO2 Content on the Structure of Na2Si2O5-Na2Ti2O5 Melts and Glasses[J].Geochim Cosmochim Acta, 1995, 59(2): 325-342.

[18] MYESN B O, RYRRSON J.The influence of TiO2 on the structure and derivative properties of silicate melts[J].Am.Mineral, 1980, 65: 1150-1165.

[19] Yali S, BALMER M L, BUNKER B C.Raman spectroscopic studies of silicotitanates[J].J Phys Chem B, 2000, 104(34): 8160-8169.

[20] XU J, LUCIER B E G, LIN Z.New Insights into the short-range structures of microporous titanosilicates as revealed by 47/49Ti, 23Na, 39K, and 29Si solid-state NMR spectroscopy[J].J Phys Chem C, 2014, 118(47): 27353-27365.

[21] YOU J L, JIANG G C, HOU H Y.Quantum chemistry study on superstructure and Raman spectra of binary sodium silicates[J].J.Raman Spectrosc, 2005, 36(3): 237-249.

[22] ZHENG K, ZHANG Z, LIU L, et al.Investigation of the viscosity and structural properties of CaO-SiO2-TiO2, Slags[J].Metall.Mater.Trans.B, 2014, 45(4): 1389-1397.

[23] LI J L, SHU Q F, CHOU K C.Structural study of glassy CaO-SiO2-CaF2-TiO2 Slags by Raman spectroscopy and MAS-NMR[J].Transactions of the Iron & Steel Institute of Japan, 2014, 54(4): 721-727.

[24] ALBERTO H V, CAMPOS N A D, MYSEN B O.The structural role of titanium in silicate glasses: A Raman study of the system CaO-SiO2-TiO2[J].J Phys Chem Glasses, 1995, 36(3): 114-122.

[25] FRANTZA J D, MYSEN B O.Raman spectra and structure of BaO-SiO2, SrO-SiO2, and CaO-SiO2 melts to 1600°C[J].Chem Geol, 1995, 121: 155-176.

[26] MYSEN B O, FRANTZ J D.Structure of silicate melts at high temperature: in-situ measurements in the system BaO-SiO2 to 1669°C[J].Am Mineral, 1993, 78: 699-709.

何莹霞, 尤静林, 王建, 马楠, 吴志东, 杨冶金. 钠钛硅酸盐精细结构及其拉曼活性分子振动的量子化学从头计算研究[J]. 光散射学报, 2019, 31(1): 38. HE Yingxia, YOU Jinglin, WANG Jian, MA Nan, WU Zhidong, YANG Yejin. Quantum Chemistry ab initio Study on Fine Structure and Raman-Active Molecular Vibration of Sodium Titanosilicates[J]. The Journal of Light Scattering, 2019, 31(1): 38.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!