强激光与粒子束, 2015, 27 (3): 032035, 网络出版: 2015-03-23  

对模拟年轻恒星喷流具有潜在应用的由强激光产生的等离子体喷流

Intense laser-generated plasma jets with potential applications to young stellar object jet simulations
作者单位
1 中国科学院 物理研究所, 北京凝聚态物理国家实验室, 北京 100190
2 中国科学院 国家天文台, 北京 100012
3 上海交通大学 物理系, 激光等离子体教育部重点实验室, 上海 200240
4 高功率激光物理国家实验室, 上海 201800
摘要
利用“神光Ⅱ”激光装置的两束激光烧蚀半圆柱壳层靶产生了高速等离子体喷流。喷流的参数由光学和X射线诊断测量。喷流是准直的,在真空中传播。一维流体力学模拟被用来间接地计算喷流的速度。喷流的准直可能来源于高Z等离子体的辐射冷却。由于和年轻恒星喷流具有某些几何相似性,实验室喷流对于在实验室中模拟年轻恒星喷流具有潜在应用。
Abstract
High speed plasma jets are generated by ablating half-cylinder-shell targets with two laser bunches on Shenguang Ⅱ Laser Facility. Using optical and X-ray diagnostics, the parameters of the plasma jets have been measured. Propagating in vacuum, the jets are collimated. One-dimensional hydrodynamic simulation is used to indirectly calculate the jet velocity. The collimation of the jets may be attributed to the expansion cooling of plasma bubbles ablated by main laser pulses. Radiative cooling of the high-Z plasmas might collimate the plasma jets as well. Having some geometrical similarities with young stellar object (YSO) jets, the jets have potential application to simulating YSO jets in laboratories.
参考文献

[1] Pino E M de G D. Astrophysical jets and outflows[J]. Adv Space Res, 2005, 35: 908-924.

[2] Reipurth B, Bally J. Herbig-Haro flows: probes of early stellar evolution[J]. Annu Rev Astro Astrophys, 2001, 39: 403-455.

[3] Begelman M C, Blandford R D, Rees M J. Theory of extragalactic radio sources[J]. Rev Mod Phys, 1984, 56: 255-351.

[4] Mirabel I F, Rodríguez L F. Sources of relativistic jets in the galaxy[J]. Annu Rev Astro Astrophys, 1999, 37: 409-443.

[5] Kuramitsu Y, Sakawa Y, Morita T, et al. Laboratory investigations on the origins of cosmic rays[J]. Plasma Phys Contol Fusion, 2012, 54: 124049.

[6] Stone J M, Turner N. Testing astrophysical radiation hydrodynamics codes with hypervelocity jet experiments on the Nova laser[J]. Astrophys J, 2000, 127: 497-502.

[7] Remington B A, Arnett D, Drake R P, et al. Modeling astrophysical phenomena in the laboratory with intense lasers[J]. Science, 1999, 284: 1488-1493.

[8] Zhong J Y, Li Y T, Wang X G, et al. Modelling loop-top X-ray source and reconnection outflows in solar flares with intense lasers[J]. Nature Phys, 2010, 6: 984-987.

[9] Remington B A, Drake R P, Takabe H, et al. A review of astrophysics experiments on intense lasers[J].Phys Plasma, 2000, 7: 1641-1652.

[10] Liu X, Li Y T, Zhang Y, et al. Collisionless shockwaves formed by counter-streaming laser-produced plasmas[J]. New J Phys, 2011, 13: 093001.

[11] Takabe H. Astrophysics with intense and ultra-intense lasers: “laser astrophysics” [J]. Prog Theor Phys Suppl, 2001, 143: 202-265.

[12] Liu X, Li Y T, Zhong J Y, et al. Characteristics of plasma jets in laser-driven magnetic reconnection[J]. Plasma Sci Technol, 2012, 14: 97-101.

[13] Remington B A. High energy density laboratory astrophysics[J]. Plasma Phys Control Fusion, 2005, 47: A191-A203.

[14] Yuan D W, Li Y T, Liu X, et al. Shockwaves and filaments induced by counter-streaming laser produced plasmas[J]. High Energy Density Phys, 2013, 9: 239-242.

[15] Remington B A, Drake R P, Ryutov D D. Experimental astrophysics with high power lasers and Z pinches[J]. Rev Mod Phys, 2006, 78: 755-807.

[16] Yuan D W, Li Y T, Su L N, et al. Filaments in high-speed counter-streaming plasma interactions driven by high-power laser pulses[J]. Sci China-Phys Mech Astron, 2013, 56: 2381-2385.

[17] Ryutov D D. Using intense lasers to simulate aspects of accretion discs and outflows in astrophysics[J]. Astrophys Space Sci, 2011, 336: 21-26.

[18] Blackman E G. Distinguishing propagation vs. launch physics of astrophysical jets and the role of experiments[J]. Astrophys Space Sci, 2007, 307: 7-10.

[19] Farley D R, Estabrook K G, Glendinning S G, et al. Radiative jet experiments of astrophysical interest using intense lasers[J]. Phys Rev Lett, 1999, 83: 1982-1999.

[20] Logory L M, Miller P L, Stry P E. Nova high-speed jet experiments[J]. Astrophys J Suppl Seri, 2000, 127: 423-428.

[21] Shigemori K, Kodama R, Farley D R, et al. Experiments on radiative collapse in laser-produced plasmas relevant to astrophysical jets[J]. Phys Rev E, 2000, 62: 8838-8841.

[22] Foster J M, Wilde B H, Rosen P A, et al. Supersonic jet and shock interactions[J]. Phys Plsma 2002, 9: 2251-2263.

[23] Blue B E, Weber S V, Glendinning S G, et al. Experimental investigation of high-Mach-number 3D hydrodynamics jets at the National Ignition Facility[J]. Phys Rev Lett, 2005, 94: 095005.

[24] Foster J M, Wilde B H, Rosen P A, et al. High-energy-density laboratory astrophysics studies of jets and bow shocks[J]. Astrophys J, 2005, 634: L77-L80.

[25] Loupias B, Koenig M, Falize E, et al. Supersonic-jet experiments using a high-energy laser[J]. Phys Rev Lett, 2007, 99: 265001.

[26] Gregory C D, Howe J, Loupias B, et al. Astrophysical jet experiments with colliding laser-produced plasmas[J]. Astrophys J, 2008, 676: 420-426.

[27] Gregory C D, Loupias B, Waugh J, et al. Astrophysical jet experiments[J]. Plasma Phys Control Fusion, 2008, 50: 124039.

[28] Tikhonchuk V T, NicolaPh, Ribeyre X, et al. Laboratory modeling of supersonic radiative jets propagation in plasmas and their scaling to astrophysical conditions[J]. Plasma Phys Control Fusion, 2008, 50: 124056.

[29] Kuramitsu Y, Sakawa Y, Waugh J N, et al. Jet formation in counterstreaming collisionless plasmas[J]. Astrophys J, 2009, 707: L137-L141.

[30] Benattar R, Popovics C, Sigel R. Polarized light interferometer for laser fusion studies[J]. Rev Sci Instrum, 1979, 50: 1583-1585.

[31] Hutchinson I H. Principles of Plasma Diagnostics[M]. 2nd ed. New York: Cambridge University. Press, 2005.

[32] Kauffman R. Physics of laser plasma[J]. Handbook of Plasma Physics, 1991, 3: 111-162.

[33] Christiansen J P, Ashby D E T F, Roberts K V. MEDUSA, a one-dimensional laser fusion code[J]. Computer Phys Commun, 1975, 10: 251-256.

[34] Li Y J, Zhang J. Hydrodynamic characteristics of transient Ni-like X-ray lasers[J]. Phys Rev E, 2001, 63: 036410.

[35] Ryutov D D, Drake R P, Kane J. Similarity criteria for the laboratory simulation of supernova hydrodynamics[J]. Astrophys J, 1999, 518: 821-832.

尹传磊, 李玉同, 鲁欣, 袁大伟, 仲佳勇, 远晓辉, 魏会冈, 张凯, 方远, 廖国前, 苏鲁宁, 韩波, 王菲鹿, 梁桂云, 杨骕, 朱健强, 赵刚, 张杰. 对模拟年轻恒星喷流具有潜在应用的由强激光产生的等离子体喷流[J]. 强激光与粒子束, 2015, 27(3): 032035. Yin Chuanlei, Li Yutong, Lu Xin, Yuan Dawei, Zhong Jiayong, Yuan Xiaohui, Wei Huigang, Zhang Kai, Fang Yuan, Liao Guoqian, Su Luning, Han Bo, Wang Feilu, Liang Guiyun, Yang Su, Zhu Jianqiang, Zhao Gang, Zhang Jie. Intense laser-generated plasma jets with potential applications to young stellar object jet simulations[J]. High Power Laser and Particle Beams, 2015, 27(3): 032035.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!