强激光与粒子束, 2017, 29 (8): 089001, 网络出版: 2017-06-30  

微激光冲击DZ17G合金的表面完整性影响研究

Effects of micro-scale laser shock peening on surface integrity of DZ17G alloy
作者单位
1 空军工程大学 等离子体动力学重点实验室, 西安 710038
2 空军工程大学 航空航天工程学院, 西安 710038
摘要
为了在不影响柱状晶组织的前提下改善DZ17G定向凝固合金的力学性能, 采用微激光冲击强化方法进行表面处理, 通过X射线衍射、扫描电子显微镜、透射电子显微镜和显微硬度计, 测试分析微激光冲击对DZ17G定向凝固合金表面完整性的影响。试验结果表明:在水下无吸收保护层微激光冲击处理后, 合金表面发生了烧蚀、熔融, 1次冲击后形成光滑熔融区, 但随着冲击次数增加而形成了大量微小烧蚀孔洞和难熔颗粒; 表层组织仍由γ和γ′两相组成, 柱状晶内形成了高密度位错和位错缠结, 但未发生晶粒细化; 硬度在深度上呈梯度分布, 冲击1次后硬化层深度仅为100 μm, 表面硬度值达到503 HV, 提高了22.7%, 而且硬度值和硬化层深度都随着冲击次数增加而增大。
Abstract
Micro-scale laser shock peening is a surface treatment technology, which utilizes laser pulse with spot-size in micro-scale, low energy and short duration to induce shock wave acting on the metals. In order to improve mechanical properties of DZ17G directionally-solidified alloy without effects on the columnar crystals, micro-scale laser shock peening was suggested. The surface morphology, microstructure and micro-hardness were studied to analyze the effects on surface integrity by X-ray diffractometer, scanning electron microscope, transmission electron microscope and micro-hardness tester. The experiment showed that the alloy surface was ablated and melted by micro-laser shock peening underwater without ablating layer. There was smooth region generated with one laser impact, but the ablation degree increased with laser impacts, generating lots of ablation holes and infusible particles. The material still consisted of phases of γ and γ′. High-density dislocations and dislocation tangles were generated in material surface after μLSP, but without grains refined. The micro-hardness decreased with depth, with an affected depth of 100 μm and a maximal value 503 HV in the surface, increased by above 20%, under one laser impact. The micro-hardness and hardened layer depth increased with laser impacts.
参考文献

[1] Zhang W W, Yao Y L. Micro-scale lasershock processing—modeling, testing, and microstructure characterization[J]. Journal of Manufacturing Process, 2002, 3(2): 128-143.

[2] Montross C S, Wei T, Ye L, et al. Laser shock processing and its effects on microstructure and properties of metal alloys: a review[J]. International Journal of Fatigue, 2002, 24(10): 1021-1036.

[3] 聂祥樊, 何卫锋, 李启鹏, 等. 激光喷丸改善TC6钛合金组织和力学性能[J]. 强激光与粒子束, 2013, 25(5): 1115-1119.(Nie Xiangfan, He Weifeng, Li Qipeng, et al. Improvement of structure and mechanical properties of TC6 titanium alloy with laser shock peening. High Power Laser and Particle Beams, 2013, 25(5): 1115-1119)

[4] 周建忠, 樊玉杰, 黄舒, 等. 激光微喷丸强化技术的研究与展望[J]. 中国激光, 2011, 38: 0601003.(Zhou Jianzhong, Fan Yujie, Huang Shu, et al. Research and prospect on micro-scale laser shot peening. Chinese Journal of Lasers, 2011, 38: 0601003)

[5] Mang Y, Kysar J W, Vukelic S, et al. Spatially resolved characterization of geometrically necessary dislocation dependent deformation in micro-scale laser shock peening[J]. Journal of Manufacturing Science and Engineering, 2009, 131: 041014.

[6] Chen H Q, Yao Y L, Kysar J W. Spatially resolved characterization of residual stress induced by micro-scale laser shock peening[J]. Journal of Manufacturing Science and Engineering, 2004, 126: 226-236.

[7] Sano Y, Obata M, Kubo T, et al. Retardation of crack initiation and growth in austenitic stainless steels by laser peening without protective coating[J]. Materials Science and Engineering A, 2006, 417: 334-340.

[8] Maawad E, Sano Y, Wagner L, et al. Investigation of laser shock peening effects on residual stress state and fatigue performance of titanium alloys[J]. Materials Science and Engineering A, 2012, 536: 82-91.

[9] 车志刚, 熊良才, 史铁林, 等. 微尺度下激光冲击金属材料的特性分析与展望[J]. 激光技术, 2008, 32(4): 350-352.(Che Zhigang, Xiong Liangcai, Shi Tielin, et al. Character analysis and development of metal material for microscale laser shock processing. Laser Technology, 2008, 32(4): 350-352)

[10] 王敏. 微尺度激光喷丸强化材料的响应与力学性能研究[D]. 镇江: 江苏大学, 2010.(Wang Min. Response and mechanical properties of material treated by microscale laser shock peening. Zhenjiang: Jiangsu University, 2010)

[11] 周建忠, 卫登辉, 黄舒, 等. 微尺度激光喷丸强化TiN涂层的表面性能[J]. 光学 精密工程, 2009, 19(11): 2679-2684.(Zhou Jianzhong, Wei Denghui, Huang Shu, et al. Microscale laser shock peening on TiN coatings. Optics and Precision Engineering, 2009, 19(11): 2679-2684)

[12] 樊玉杰, 周建忠, 黄舒, 等. 激光微喷丸强化纯铜表面的纳米压痕分析[J]. 中国激光, 2008, 35: 0603026.(Fan Yujie, Zhou Jianzhong, Huang Shu, et al. Research on mechanical response of copper treated by micro laser shock peening using nanoindentation technique. Chinese Journal of Lasers, 2008, 35: 0603026)

[13] 焦阳, 何卫锋, 罗思海, 等. 无保护层激光冲击提高K24合金高周疲劳性能研究[J]. 中国激光, 2015, 42: 1003002.(Jiao Yang, He Weifeng, Luo Sihai, et al. Study of micro-scale laser shock processing without coating improving the high cycle fatigue performance of K24 simulated blades. Chinese Journal of Lasers, 2015, 42: 1003002)

[14] Nie Xiangfan, He Weifeng, Zhou Liucheng, et al. Experiment investigation of laser shock peening on TC6 titanium alloy to improve high cycle fatigue performance[J]. Materials Science & Engineering A, 2014, 594: 161-167.

[15] Altenberger I, Nalla R K, Sano Y, et al. On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti-6Al-4V at elevated temperatures up to 550 ℃[J]. International Journal of Fatigue, 2012, 44: 292-302.

[16] 《中国航空材料手册》总编委会. 中国航空材料手册[M]. 北京: 中国标准出版社, 2002.(Chinese Aeronautical Material Handbook Committee. Chinese aeronautical material handbook. Beijing: Chinese Standard Press, 2002)

[17] Fabbro R, Foumier J, Ballard P, et al. Physical study of laser-produced plasma in confined geometry[J]. Applied Physics, 1990, 68(2): 775-784.

[18] Meyers M A. Dynamic behavior of materials[M]. New York: John Wiley & Sons Inc, 1994.

王学德, 李一鸣, 聂祥樊, 贾文铜, 田乐, 李翔. 微激光冲击DZ17G合金的表面完整性影响研究[J]. 强激光与粒子束, 2017, 29(8): 089001. Wang Xuede, Li Yiming, Nie Xiangfan, Jia Wentong, Tian Le, Li Xiang. Effects of micro-scale laser shock peening on surface integrity of DZ17G alloy[J]. High Power Laser and Particle Beams, 2017, 29(8): 089001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!