激光与光电子学进展, 2017, 54 (10): 100004, 网络出版: 2017-10-09   

合成孔径激光雷达成像发展及关键技术 下载: 1327次

Development and Key Technologies of Synthetic Aperture Ladar Imaging
作者单位
装备学院光电装备系, 北京 101416
摘要
合成孔径激光雷达(SAL)能够突破激光的衍射限制, 满足对远距离目标和场景进行高精度实时成像的需求。从SAL理论和实验进展两方面, 详细总结分析了SAL的国内外发展现状。在此基础上, 总结和分析了实现SAL实际应用, 还需深入研究的几个关键技术: 激光光源、发射信号波形、探测体制、激光传输特性和目标反射特性、成像算法和运动补偿等, 为进行SAL的深入研究和实用化奠定基础。
Abstract
Synthetic aperture ladar (SAL) breaks through the diffraction restrict of laser, which is able to afford the need of high precision and real time imaging for the remote targets and scenes. The development situation of SAL at home and abroad is analyzed in detail, through two aspects of theoretical status and experimental progress. On this basis, the key technologies such as SAL laser source, emission signal waveform, laser transmission characteristics and target reflection characteristics, imaging algorithm and motion compensation are summarized and analyzed. It lays the foundation for further study and practical application of SAL.
参考文献

[1] 刘立人. 合成孔径激光成像雷达(I): 离焦和相位偏置望远镜接收天线[J]. 光学学报, 2008, 28(5): 997-1000.

    Liu Liren. Synthetic aperture laser imaging radar (I): defocused and phase biased telescope for reception antenna[J]. Acta Optica Sinica, 2008, 28(5): 997-1000.

[2] 张小红, 杨敏, 郭亮. 合成孔径激光雷达研究进展[J]. 激光技术, 2011, 35(2): 255-259.

    Zhang Xiaohong, Yang Min, Guo Liang. Research progress of synthetic aperture lidars[J]. Laser Technology, 2011, 35(2): 255-259.

[3] Lewis T S, Hutchins H S. A synthetic aperture at 10.6 microns[C]. Proceedings of the IEEE, 1970, 58(10): 1781-1782.

[4] Aleksoff C C, Accetta J S, Peterson L M, et al. Synthetic aperture imaging with a pulsed CO2 TEA laser[C]. Technical Symposium Southeast International Society for Optics and Photonics, 1987: 29-41.

[5] Kyle T G. High resolution laser imaging system[J]. Applied Optics, 1989, 28(13): 2651-2656.

[6] Strauss C E M. Synthetic-array heterodyne detection: a single-element detector acts as an array[J]. Optics Letters, 1994, 19(20): 1609-1611.

[7] Green J T J, Marcus S, Colella B D. Synthetic-aperture-radar imaging with a solid-state laser[J]. Applied Optics, 1995, 34(30): 6941-6949.

[8] Yoshikado S, Aruga T. Short-range verification experiment of a trial one-dimensional synthetic aperture infrared laser radar operated in the 10 μm band[J]. Applied Optics, 2000, 39(9): 1421-1425.

[9] Lucke R L, Richard L J, Bashkansky M, et al. Synthetic aperture ladar (SAL): Fundamental theory, design equation for a satellite system, and laboratory demonstration[R]. Naval Research Laboratory, 2002.

[10] Bashkansky M, Lucke R L, Funk E, et al. Two-dimensional synthetic aperture imaging in the optical domain[J]. Optics Letters, 2002, 27(22): 1983-1985.

[11] Bashkansky M, Lucke R L, Funk E E, et al. Synthetic aperture imaging at 1.5 μ: laboratory demonstration and potential application to planet surface studies[C]. Astronomical Telescopes and Instrumentation. International Society for Optics and Photonics, 2002: 48-56.

[12] Beck S M, Buck J R, Buell W F, et al. Synthetic-aperture imaging laser radar: Laboratory demonstration and signal processing[J]. Applied Optics, 2005, 44(35): 7621-7629.

[13] Ricklin J, Dierking M, Fuhrer S, et al. Synthetic aperture ladar for tactical imaging (SALTI) flight test results and path forward[C]. Proceedings of the the 14th Coherent Laser Radar Conference, Colorado, 2007: 8-13.

[14] Krause B, Buck J, Ryan C, et al. Synthetic aperture ladar flight demonstration[J]. 2011 Conference on Laser and Electro-Optics, 2011: PDPB7.

[15] Stephen Crouch, Zeb W Barber. Laboratory demonstrations of interferometric and spotlight synthetic aperture ladar techniques[J]. Optics Express, 2012, 20(22): 24237-24246.

[16] Turbide S, Marchese L, Terroux M, et al. An all-optronic synthetic aperture lidar[C]. SPIE, 2012, 8542: 854213.

[17] Turbide S, Marchese L, Terroux M, et al. Investigation of synthetic aperture ladar for land surveillance applications[C]. SPIE, 2013, 8897: 889709.

[18] Turbide S, Marchese L, Terroux M, et al. Synthetic aperture ladar concept for infrastructure monitoring[C]. SPIE, 2014, 9250: 92500B.

[19] Turbide S, Marchese L, Bergeron A, et al. Synthetic aperture ladar based on a MOPAW laser[C]. SPIE, 2016,10005: 1000502.

[20] Barber Z W, Dahl J R. Synthetic aperture ladar imaging demonstrations and information at very low return levels[J]. Applied Optics, 2014, 53(24): 5531-5537.

[21] Crouch S, Barber Z W. Laboratory demonstrations of interferometric and spotlight synthetic aperture ladar techniques[J]. Optics Express, 2012, 20(22): 24237-24246.

[22] Trahan R, Nemati B, Zhou H, et al. Low-CNR inverse synthetic aperture ladar imaging demonstration with atmospheric turbulence[C]. SPIE, 2016, 9846: 98460E.

[23] 周兆萍. 合成孔径激光雷达[J]. 红外与激光工程, 1990(2): 49-52.

    Zhou Zhaoping. Synthetie aperture ladar[J]. Infrared and Laser Engineering, 1990(2): 49-52.

[24] 张云, 吴谨, 唐永新. 合成孔径激光雷达[J]. 激光与光电子学进展, 2005, 42(7): 48-50.

    Zhang Yun, Wu Jin, Tang Yongxin. Synthetie aperture ladar[J]. Laser & Optoelectronics Progress, 2005, 42(7): 48-50.

[25] 郭亮, 邢孟道, 曾晓东, 等. 室内实测数据的逆合成孔径激光雷达成像[J]. 红外与激光工程, 2011, 40(4): 637-642.

    Guo Liang, Xing Mengdao, Zeng Xiaodong, et al. Inverse synthetic aperture lidar imaging of indoor real data[J]. Infrared and Laser Engineering, 2011, 40(4): 637-642.

[26] 郭亮, 曾晓东, 邢孟道, 等. 低脉冲重复频率合成孔径激光雷达成像[J]. 光电子·激光, 2011, 22(5): 772-777.

    Guo Liang, Zeng Xiaodong, Xing Mengdao, et al. Study of synthetic aperture lidar imaging with lower pulse repetition frequency[J]. Journal of Optoelectronics Laser, 2011, 22(5): 772-777.

[27] Liu L R. Coherent and incoherent synthetic-aperture imaging ladars and laboratory-space experimental demonstrations[J]. Applied Optics, 2013, 52(4): 579-599.

[28] Luan Z, Sun J, Zhou Y, et al. Down-looking synthetic aperture imaging ladar demonstrator and its experiments over 1.2 km outdoor[J]. Chinese Optics Letters, 2014, 12(11): 111101.

[29] 刘立人, 周煜, 职亚楠, 等. 大口径合成孔径激光成像雷达演示样机及其实验室验证[J]. 光学学报, 2011, 31(9): 0900112.

    Liu Liren, Zhou Yu, Zhi Yanan, et al. A large-aperture synthetic aperture imaging ladar demonstrator and its verification in laboratory space[J]. Acta Optica Sinica, 2011, 31(9): 0900112.

[30] 刘立人. 直视合成孔径激光成像雷达原理[J]. 光学学报, 2012, 32(9): 0928002.

    Liu Liren. Principle of down-looking synthetic aperture imaging ladar[J]. Acta Optica Sinica, 2012, 32(9): 0928002.

[31] 刘立人. 自干涉合成孔径激光三维成像雷达原理[J]. 光学学报, 2014, 34(5): 0528001.

    Liu Liren. Principle of self-interferometric synthetic aperture ladar for 3D imaging[J]. Acta Optica Sinica, 2014, 34(5): 0528001.

[32] 刘立人. 高分辨率遥感新途径-合成孔径激光成像雷达[J]. 科学, 2014, 66(6): 25-29.

    Liu Liren. A new way to high-resolution remote sensing: Synthetic aperture imaging ladar[J]. Science, 2014, 66(6): 25-29.

[33] 马小平, 孙建锋, 卢智勇, 等. 直视合成孔径激光成像雷达双面反射棱镜旋转发射装置内发射场的空间波前特性研究[J]. 光学学报, 2013, 33(12): 1228001.

    Ma Xiaoping, Sun Jianfeng, Lu Zhiyong. Research on spatial wave-front characteristics of the inner optical fields of the transmitter with double-face rotatable reflectors in down-looking synthetic aperture imaging ladar[J]. Acta Optica Sinica, 2013, 33(12): 1228001.

[34] Xu Q, Sun Z, Sun J, et al. Speckle reduction of synthetic aperture imaging ladar based on wavelength characteristics[J]. Chinese Optics Letters, 2014, 12(8): 080301.

[35] 许倩, 周煜, 孙建锋, 等. 合成孔径激光成像雷达时空散斑效应模拟与分析[J]. 光学学报, 2013, 33(10): 1028002.

    Xu Qian, Zhou Yu, Sun Jianfeng. Analysis and simulation of space-time speckle effect based on synthetic aperture imaging ladar[J]. Acta Optica Sinica, 2013, 33(10):1028002.

[36] Lu W, Lu Z, Sun Z, et al. A demonstrator of all-optronic multifunctional down-looking synthetic aperture LADAR[C]. SPIE, 2015, 9617: 96170O.

[37] Lu Z Y, Zhang N, Sun J, et al. Laboratory demonstration of static-mode down-looking synthetic aperture imaging ladar[J]. Chinese Optics Letters, 2015, 13(4): 042801.

[38] Zhang N , Lu Z Y, Sun J, et al. Laboratory demonstration of spotlight-mode down-looking synthetic aperture imaging ladar[J]. Chinese Optics Letters, 2015, 13(9): 091001.

[39] 张宁, 卢智勇, 孙建锋. 直视合成孔径激光成像雷达滑动聚束模式下图像信噪比研究[J]. 光学学报, 2016, 36(8): 0828001.

    Zhang Ning, Lu Zhiyong, Sun Jianfeng. Research on the signal-to-noise ratio in sliding spotlight mode down-looking synthetic aperture imaging ladar[J]. Acta Optica Sinica, 2016, 36(8): 0828001.

[40] Zhao Z L, Wu J, Su Y Y, et al. Three-dimensional imaging interferometric synthetic aperture ladar[J]. Chinese Optics Letters, 2014, 12(9): 091101.

[41] Wu J, Li F F, Zhao Z L, et al. Demonstration of strip map mode synthetic aperture ladar with PGA-independent high resolution images[J]. Infrared and Laser Engineering, 2014, 43(11): 3559-3564.

[42] 吴谨, 赵志龙, 吴曙东, 等. 12.9 m高分辨率合成孔径激光雷达成像[J]. 光学学报, 2015, 35(12): 1228002.

    Wu Jin, Zhao Zhilong, Wu Shudong, et al. High resolution synthetic aperture ladar imaging at 12.9 m distance[J]. Acta Optica Sinica, 2015, 35(12): 1228002.

[43] Wang N, Wang R, Li G, et al. Experiment of inverse synthetic aperture Ladar at 1.1 km[C]. SPIE, 2016, 10155: 101551G.

[44] 卢智勇, 周煜, 孙建峰, 等. 机载直视合成孔径激光成像雷达外场及飞行实验[J]. 中国激光, 2017, 44(1): 0110001.

    Lu Zhiyong, Zhou Yu, Sun Jianfeng, et al. Airborne down-looking synthetic aperture imaging ladar field experiment and its flight testing[J]. Chinese J Lasers, 2017, 44(1): 0110001.

[45] Li G Z, Wang R, Song Z Q, et al. Linear frequency-modulated continuous-wave ladar system for synthetic aperture imaging[J]. Applied Optics, 2017, 56(12): 3257-3262.

[46] 黄宇翔, 宋盛, 徐卫明, 等. 连续m序列相位调制的实时逆合成孔径激光雷达系统[J]. 激光与光电子学进展, 2017, 54(7): 072801.

    Huang Yuxiang, Song Sheng, Xu Weiming, et al. Real-time inverse synthetic aperture ladar system based on continuous m-sequence phase modulation method[J]. Laser & Optoelectronics Progress, 2017, 54(7): 072801.

[47] Tang Y, Qin B, Yan Y, et al. Multiple-input multiple-output synthetic aperture ladar system for wide-range swath with high azimuth resolution[J]. Applied Optics, 2016, 55(6): 1401-1405.

[48] 杜剑波, 李道京, 马萌. 机载合成孔径激光雷达相位调制信号性能分析和成像处理[J]. 雷达学报, 2014, 3(1): 111-118.

    Du Jianbo, Li Daojing, Ma Meng. Performance analysis and image processing of phase-modulated signal on airborne synthetic aperture ladar[J]. Jonrnal of Radars, 2014, 3(1): 111-118.

[49] 赵志龙, 苏园园, 吴谨. 基于合成频率步进线性调频信号的合成孔径激光雷达成像[J]. 强激光与粒子束, 2015, 27(5): 21-26.

    Zhao Zhilong, Su Yuanyuan, Wu Jin. Synthetic aperture radar imaging via synthetic Frequency stepped linearly chirping signal[J]. High Power Laser and Particle Beams, 2015, 27(5): 21-26.

[50] 李飞, 张鸿翼, 吴军, 等. 强度编码合成孔径激光雷达原理与实验[J]. 红外与激光工程, 2015, 44(9): 2575-2582.

    Li Fei, Zhang Hongyi, Wu Jun, et al. Mechanism and experiment of code intensity-modulation on synthetic aperture ladar[J]. Infrared and Laser Engineering, 2015, 44(9): 2575-2582.

[51] 李祥. 逆合成孔径激光雷达光外差探测关键技术研究[D]. 长春: 长春理工大学, 2014: 12-26.

    Li Xiang. Research on optical heterodyne detection in inverse synthetic aperture Lidar[D]. Changchun: Changchun University of Science and Technology, 2014: 12-26.

[52] 刘旭, 陈建文, 卢常勇, 等. 激光雷达逆合成孔径成像技术现状及关键问题[J]. 红外与激光工程, 2009, 38(4): 642-649.

    Liu Xu, Chen Jianwen, Lu Changyong, et al. Developing technologies and key inverse synthetic aperture problems of lidar[J]. Infrared and Laser Engineering, 2009, 38(4): 642-649.

[53] Hua Z, Li H, Gu Y. Atmospheric turbulence phase compensation in synthetic aperture LADAR data processing[C]. SPIE, 2007, 6787: 678724.

[54] 鲁天安, 李洪平. 机载合成孔径激光雷达相位误差补偿研究[J]. 光学学报, 2015, 35(8): 0801002.

    Lu Tianan, Li Hongping. Phase error compensation in airborne synthetic aperture lidar data processing[J]. Acta Optica Sinica, 2015, 35(8): 0801002.

[55] 党文佳, 曾晓东, 曹长庆, 等. 粗糙目标合成孔径激光雷达信号仿真[J]. 光子学报, 2015, 44(3): 0304001.

    Dang Wenjia, Zeng Xiaodong, Cao Changqing, et al. Simulation of the rough target′s signal in synthetic aperture ladar[J]. Acta Photonica Sinica, 2015, 44(3): 0304001.

[56] 党文佳, 曾晓东, 冯喆珺. 目标粗糙对合成孔径激光雷达的退相干效应[J]. 物理学报, 2013, 62(2): 024204.

    Dang Wenjia, Zeng Xiaodong, Feng Zhejun. Decoherence effect of target roughness in synthetic aperture ladar[J]. Acta Physica Sinica, 2013, 62(2): 024204.

[57] 郭亮, 邢孟道, 梁毅. 合成孔径成像激光雷达成像算法研究[J]. 光子学报, 2009, 38(2): 448-452.

    Guo Liang, Xing Mengdao, Liang Yi. Synthetic aperture imaging ladar imaging algorithm[J]. Acta Photonica Sinica, 2009, 38(2): 448-452.

[58] 臧博. 合成孔径成像激光雷达算法研究[D]. 西安: 西安电子科技大学, 2011: 40-64.

    Zang Bo. Synthetic aperture imaging ladar imaging algorithm[D]. Xi′an: Xidian University, 2011: 40-64.

[59] 李小珍. 机载合成孔径激光雷达系统设计与算法研究[D]. 西安: 西安电子科技大学, 2015: 49-54.

    Li Xiaozhen. Study on system design and algorithm of airborne synthetic aperture ladar[D]. Xi′an: Xidian University, 2015: 49-54.

[60] 何劲, 张群, 杨小优, 等. 逆合成孔径成像激光雷达成像算法[J]. 红外与激光工程, 2012, 41(4): 1094-1100.

    He Jin, Zhang Qun, Yang Xiaoyou, et al. Imaging algorithm for inverse synthetic aperture imaging ladar[J]. Infrared and Laser Engineering, 2012, 41(4): 1094-1100.

[61] 何劲, 张群, 杨小优, 等. 基于压缩感知理论的合成孔径激光雷达成像算法[J]. 宇航学报, 2011, 32(11): 2395-2402.

    He Jin, Zhang Qun, Yang Xiaoyou. SAL imaging algorithm based on compressed sensing theory[J]. Journal of Astronautics, 2011, 32(11): 2395-2402.

[62] Yang X Y, Chi L, Zhang Q, et al. Analysis of inner-pulse Doppler effect for the echoes of inverse synthetic aperture ladar[C]. IEEE International Conference on Signal Processing, 2010: 2295-2298.

[63] 阮航, 吴彦鸿, 叶伟. 逆合成孔径激光雷达相位误差补偿算法[J]. 激光与光电子学进展, 2013, 50(10): 102801.

    Ruan Hang, Wu Yanhong, Ye Wei. Algorithm of phase errors compensation for inverse synthetic aperture ladar[J]. Laser & Optoelectronics Progress, 2013, 50(10): 102801.

[64] 阮航, 吴彦鸿, 叶伟. 匀速运动目标逆合成孔径激光雷达成像算法[J]. 红外与激光工程, 2014, 43(4): 1124-1129.

    Ruan Hang, Wu Yanhong, Ye Wei. Inverse synthetic aperture ladar imaging algorithm for uniform motion targets[J]. Infrared and Laser Engineering, 2014, 43(4): 1124-1129.

[65] Ruan H, Wu Y, Jia X, et al. Novel ISAR imaging algorithm for maneuvering targets based on a modified keystone transform[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 128-132.

[66] 胡以华. 空间激光成像目标精确侦察技术[J]. 国防科技, 2016, 37(1): 30-36.

    Hu Yihua. Laser imaging technology for space target precise reconnaissance[J]. National Defensse Scence & Technology, 2016, 37(1): 30-36.

[67] 丁健, 李磊. 逆合成孔径激光雷达鸟类目标成像方法研究[J]. 激光杂志, 2015, 36(2): 60-62.

    Ding Jian, Li Lei. Research on imaging avian using ISAIL[J]. Laser Journal, 2015, 36(2): 60-62.

[68] 李增局, 吴谨, 刘国国, 等. 振动影响机载合成孔径激光雷达成像初步研究[J]. 光学学报, 2010, 30(4): 994-1001.

    Li Zengju, Wu Jin, Liu Guoguo, et al. Preliminary investigation on airborne SAL imaging with platform vibration[J]. Acta Optica Sinica, 2010, 30(4): 994-1001.

[69] 洪光烈, 郭亮. 线振动对合成孔径激光雷达成像的影响分析[J]. 光学学报, 2012, 32(4): 0428001.

    Hong Guanglie, Guo Liang. Analysis of effects of line vibration on imaging quality of synthetic aperture ladar[J]. Acta Optica Sinica, 2012, 32(4): 0428001.

[70] 洪光烈, 郭亮. 角振动对合成孔径激光雷达成像的影响[J]. 红外与毫米波学报, 2011, 30(6): 571-576.

    Hong Guanglie, Guo Liang. Effects of angle vibration on imaging quality of synthetic aperture ladar[J]. Journal of Infrared and Millimeter Waves, 2011, 30(6): 571-576.

[71] 马萌, 李道京, 杜剑波. 振动条件下机载合成孔径激光雷达成像处理[J]. 雷达学报, 2014, 3(5): 591-602.

    Ma Meng, Li Daojing, Du Jianbo. Imaging of airborne synthetic aperture ladar under platform vibration condition[J]. Journal of Radars, 2014, 3(5): 591-602.

[72] 张鸿翼, 李飞, 徐卫明. 利用优化算法对合成孔径激光雷达相位误差补偿的研究[J]. 电子学报, 2016, 44(9): 2100-2105.

    Zhang Hongyi, Li Fei, Xu Weiming. Research on the phase error compensation in synthetic aperture ladar by using optimization algorithm[J]. Acta Electronica Sinica, 2016, 44(9): 2100-2105.

[73] 杜剑波, 李道京, 马萌. 基于干涉处理的机载合成孔径激光雷达振动估计和成像[J]. 中国激光, 2016, 43(9): 0910003.

    Du Jianbo, Li Daojing, Ma Meng. Vibration estimation and imaging of airborne synthetic aperture ladar based on interferometry processing[J]. Chinese J Lasers, 2016, 43(9): 0910003.

[74] 张艳, 陈涌, 周鼎富, 等. 锐化函数对合成孔径激光雷达成像图像的影响[J]. 红外与激光工程, 2015, 44(9): 2588-2592.

    Zhang Yan, Chen Yong, Zhou Dingfu, et al. Influence of sharpen function on the object image of synthetic aperture ladar[J]. Infrared and Laser Engineering, 2015, 44(9): 2588-2592.

[75] 李道京, 杜剑波, 马萌, 等. 天基合成孔径激光雷达系统分析[J]. 红外与激光工程, 2016, 45(11): 269-276.

    Li Daojing, Du Jianbo, Ma Meng, et al. System analysis of space borne synthetic aperture ladar[J]. Infrared and Laser Engineering, 2016, 45(11): 269-276.

吕亚昆, 吴彦鸿. 合成孔径激光雷达成像发展及关键技术[J]. 激光与光电子学进展, 2017, 54(10): 100004. Lü Yakun, Wu Yanhong. Development and Key Technologies of Synthetic Aperture Ladar Imaging[J]. Laser & Optoelectronics Progress, 2017, 54(10): 100004.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!