中国激光, 2014, 41 (3): 0310001, 网络出版: 2014-03-03  

利用激光诱导化学沉积法制备锥形光纤SERS探针

Fabrications for Tapered Fiber SERS Probes with Laser-Induced Chemical Deposition Method
作者单位
中国科学院安徽光学精密机械研究所安徽省光子器件与材料重点实验室, 安徽 合肥 230031
摘要
实验研究了激光诱导化学沉积法(LICDM)制备锥形光纤表面增强拉曼散射(SERS)探针及其SERS检测性能。结果表明,因不同角度光纤探针锥面出射光场分布不同,导致了LICDM在制备小锥角光纤探针时沉积纳米颗粒的困难,但是通过延长反应时间,利用银纳米颗粒的光散射效应可改善小角度光纤探针表面纳米颗粒的制备效果。实验利用100 mW的诱导激光,在0.005 mol/L反应液中,经60 min沉积,制备出了不同锥角的光纤探针。对光纤探针的测试结果表明,锥角为8.2°的光纤探针所测得的SERS频移峰及其荧光背景的幅度最大,且该角度在不同SERS激发光功率下基本不变。
Abstract
The fabrications for the tapered fiber probes with the laser-induced chemical deposition method (LICDM) and the surface enhanced Raman scattering (SERS) detection performance of the prepared probes are experimentally investigated in this paper. Our results show that, it is difficult to deposit nanoparticles on the surface of the small cone angle tapered fiber probes with LICDM. The main reason is that the taper surfaces are mainly covered by a relatively low-intensity evanescent field. By lengthening the reaction time, however, it is still possible to deposit nanoparticles on small-angle tapers with the light-scattering effect, which is caused by the silver nanoparticles. With the inducing laser power of 100 mW and the reaction solution of 0.005 mol/L, tapered fiber probes with different cone angles are successfully prepared after depositing for 60 min. The testing results show that for this specific preparation condition, the tapered fiber probe with the cone angle of 8.2° exhibits the highest SERS spectral intensity, which is almost unchanged for different excitation laser powers.
参考文献

[1] M Bolboaca, T Iliescu, W Kiefer. Infrared absorption, Raman, and SERS investigations in conjunction with theoretical simulations on a phenothiazine derivative[J]. Chem Phys, 2004, 298(1): 87-95.

[2] R Y Zhang, D W Pang, Z L Zhang, et al.. Investigation of ordered ds-DNA monolayers on gold electrodes[J]. J Phys Chem B, 2002, 106(43): 11233-11239.

[3] T M Cotton, J H Kim, G D Chumanov. Application of surface-enhanced Raman spectroscopy to biological systems[J]. J Raman Spectrosc, 1991, 22(12): 729-742.

[4] T Siegfried, Y Ekinci, H H Solak, et al.. Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors[J]. Appl Phys Lett, 2011, 99(26): 263302.

[5] 廖艳林, 刘晔, 曹杰, 等. 一种基于光纤器件的表面增强拉曼散射光谱检测系统[J]. 中国激光, 2012, 39(7): 0715002.

    Liao Yanlin, Liu Ye, Cao Jie, et al.. A surface enchanced Raman scattering spectrum detection system based on fiber devices[J]. Chinese J Lasers, 2012, 39(7): 0715002.

[6] K I Mullen, K T Carron. Surface-enhanced Raman spectroscopy with abrasively modified fiber optic probes[J]. Anal Chem, 1991, 63(19): 2196-2199.

[7] Y Zhang, C Gu, A M Schwartzberg, et al.. Surface-enhanced Raman scattering sensor based on D-shaped fiber[J]. Appl Phys Lett, 2005, 87(12): 123105.

[8] C Viets, W Hill. Fibre-optic SERS sensors with angled tips[J]. J Mol Struct, 2001, 565-566: 515-518.

[9] C Viets, W Hill. Fibre-optic SERS sensors with conically etched tips[J]. J Mol Struct, 2001, 563-564: 163-166.

[10] A Lucotti, G Zerbi. Fiber-optic SERS sensor with optimized geometry[J]. Sens Actuators B, 2007, 121: 356-364.

[11] X W Lan, Y K Han, T Wei, et al.. Surface-enhanced Raman-scattering fiber probe fabricated by femtosecond laser[J]. Opt Lett, 2009, 34(15): 2285-2287.

[12] E J Smythe, M D Dickey, J Bao, et al.. Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection[J]. Nano Lett, 2009, 9(3): 1132-1138.

[13] X L Zheng, D W Guo, Y L Shao, et al.. Photochemical modification of an optical fiber tip with a silver nanoparticle film: a SERS chemical sensor[J]. Langmuir, 2008, 24(8): 4394-4398.

[14] T Liu, X S Xiao, C X Yang. Surfactantless photochemical deposition of gold nanoparticles on an optical fiber core for surface-enhanced Raman scattering[J]. Langmuir, 2011, 27(8): 4623-4626.

[15] A Grazia, M Riccardo, F L Ciaccheri. Evanescent wave absorption spectroscopy by means of bi-tapered multimode optical fibers[J]. Appl Spec, 1998, 52(4): 546-551.

[16] M S Kumar. Fundamentals of Optical Fibre Communication[M]. New Delhi: Prentice-Hall of India Privated Limited, 2005. 41.

[17] S P Guo, S Albin. Transmission property and evanescent wave absorption of cladded multimode fiber tapers[J]. Opt Express, 2003, 11(3): 215-223.

[18] J P Kottmann, O J F Martin, D R Smith, et al.. Plasmon resonances of silver nanowires with a nonregular cross section[J]. Phys Rev B, 2001, 64(23): 235402.

[19] 张兴坊, 张腊梅, 范群芳, 等. 金纳米球壳结构局域表面等离子体共振调谐特性[J]. 中国激光, 2011, 38(9): 0910001.

    Zhang Xingfang, Zhang Lamei, Fan Qunfang, et al.. Tunable localized surface plasmon resonance of gold nanoshell particle[J]. Chinese J Lasers, 2011, 38(9): 0910001.

[20] S F Zong, Z Y Wang, J Yang, et al.. Intracellular pH sensing using p-aminothiophenol functionalized gold nanorods with low cytotoxicity[J]. Anal Chem, 2011, 83(11): 4178-4183.

范群芳, 刘晔, 曹杰, 姚波, 毛庆和. 利用激光诱导化学沉积法制备锥形光纤SERS探针[J]. 中国激光, 2014, 41(3): 0310001. Fan Qunfang, Liu Ye, Cao Jie, Yao Bo, Mao Qinghe. Fabrications for Tapered Fiber SERS Probes with Laser-Induced Chemical Deposition Method[J]. Chinese Journal of Lasers, 2014, 41(3): 0310001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!