Frontiers of Optoelectronics, 2017, 10 (3): 308, 网络出版: 2018-01-17  

Characterization of irradiated nails in terms of depolarizing Mueller matrix decompositions

Characterization of irradiated nails in terms of depolarizing Mueller matrix decompositions
作者单位
1 Taras Shevchenko National University of Kyiv, Faculty of Radio Physics, Electronics, and Computer Systems, Vladimirskaya str. 64, 01033 Kiev, Ukraine
2 Lomonosov Moscow State University, Department of Physics and International Laser Center, Vorobiovy Gory, 119992 Moscow, Russia
3 Oklahoma State University, Department of Physics, 145 Physical Sciences Building, Stillwater, Oklahoma 74078, USA
摘要
Abstract
Mueller matrices were measured for natural (or reference) samples of human nails and samples irradiated by a 2 Gy ionizing radiation dose. The elements of the total Mueller matrix as a function of scattering angle were measured in backscattering mode at a wavelength of 632.8 nm. Several types of depolarizing Mueller matrix decompositions, namely, Ossikovsky, Williams, and Chipman, were calculated as a function of scattering angle for each nail sample. A comparative analysis of the sensitivity of the Mueller matrix decompositions in relation to the problem of emergency dose assessment in nails was performed.<作者简介Sergey Savenkov obtained his Ph.D. and Sc.D. degrees from Taras Shevchenko National University of Kyiv (Ukraine) in 1996 and 2013, respectively. Since 1986, Dr. Savenkov has been a researcher at the Faculty of Radio Physics, Electronics, and Computer Systems, Taras Shevchenko National University of Kyiv (Ukraine). His areas of scientific interest include laser polarimetry, polarimetry of anisotropic and depolarized media, and biomedical optics.
参考文献

[1] McKeever S W S, Sholom S. Biodosimetry versus physical dosimetry for emergency dose assessment following large-scale radiological exposures. Radiation Measurements, 2016, 92: 8-18

[2] Bailiff I K, Sholom S, McKeever S W S. Retrospective and emergency dosimetry in response to radiologic alincidents and nuclear mass-casualty events, a review. Radiation Measurements, 2016, 94: 83-139

[3] Ainsbury E, Badie C, Barnard S, Manning G, Moquet J, Abend M, Antunes A C, Barrios L, Bassinet C, Beinke C, Bortolin E, Bossin L, Bricknell C, Brzoska K, Buraczewska I, Casta o C H, emusová Z, Christiansson M, Cordero SM, Cosler G, Monaca S D, Desangles F, Discher M, Dominguez I, Doucha-Senf S, Eakins J, Fattibene P, Filippi S, Frenzel M, Georgieva D, Gregoire E, Guogyte K, Hadjidekova V, Hadjiiska L, Hristova R, Karakosta M, Kis E, Kriehuber R, Lee J, Lloyd D, Lumniczky K, Lyng F, Macaeva E, Majewski M, Vanda Martins S, McKeever S W, Meade A, Medipally D, Meschini R, M’kacher R, Gil O M, Montero A, Moreno M, Noditi M, Oestreicher U, Oskamp D, Palitti F, Palma V, Pantelias G, Pateux J, Patrono C, Pepe G, Port M, Prieto M J, Quattrini M C, Quintens R, Ricoul M, Roy L, Sabatier L, Sebastià N, Sholom S, Sommer S, Staynova A, Strunz S, Terzoudi G, Testa A, Trompier F, Valente M, Hoey O V, Veronese I, Wojcik A, Woda C. Integration of new biological and physical retrospective dosimetry methods into EU emergency response plans- joint RENEB and EURADOS inter-laboratory comparisons. International Journal of Radiation Biology, 2017, 93(1): 99-109

[4] Bassinet C, Woda C, Bortolin E, Della Monaca S, Fattibene P, Quattrini M S, Bulanek B, Ekendahl D, Burbidge C, Cauwels V, Kouroukla E, Geber-Bergstrand T, Piasjkowski A, Marczewska B, Bilksi P, Sholom S, McKeever S W S, Smith R, Veronese I, Gallim A, Panzeri L, Martini M. Retrospective radiation dosimetry using OSL from electronic components: results of an inter-laboratory comparison. Radiation Measurements, 2014, 71: 475-479

[5] Sholom S, McKeever S W S. Emergency OSL/TL dosimetry with integrated circuits from mobile phones. In: Proceedings of SPIE Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XVI, 921319. San Diego, California, United States, 2014, 921319

[6] Sholom S, McKeever SWS. Integrated circuits from mobile phones as possible emergency OSL/TL dosimeters. Radiation Protection Dosimetry, 2016, 170(1-4): 398-401

[7] Discher M, Woda C, Fiedler I. Improvement of dose determination using glass display of mobile phones for accident dosimetry. Radiation Measurements, 2013, 56: 240-243

[8] Discher M, Bortolin E, Woda C. Investigations of touchscreen glasses from mobile phones for retrospective and accident dosimetry. Radiation Measurements, 2016, 89: 44-51

[9] ascu A, Vasiliniuc S, Zeciu-Dolha M, Timar-Gabor A. The potential of luminescence signals from electronic components for accident dosimetry. Radiation Measurements, 2013, 56: 384-388

[10] Sholom S, Dewitt R, Simon S L, Bouville A, McKeever S W S. Emergency dose estimation using optically stimulated luminescence from human tooth enamel. Radiation Measurements, 2011, 46(9): 778-782

[11] Sholom S, Dewitt R, Simon S, Bouville A, McKeever S. Emergency optically stimulated luminescence dosimetry using different materials. Radiation Measurements, 2011, 46(12): 1866-1869

[12] Sholom S, Desrosiers M. EPR and OSL emergency dosimetry with teeth: a direct comparison of two techniques. Radiation Measurements, 2014, 71: 494-497

[13] Williams B B, Flood A B, Salikhov I, Kobayashi K, Dong R, Rychert K, Du G, Schreiber W, Swartz H M. In vivo EPR tooth dosimetry for triage after a radiation event involving large populations. Radiation and Environmental Biophysics, 2014, 53 (2): 335-346

[14] Tipikin D S, Swarts S G, Sidabras J W, Trompier F, Swartz H M. Possible nature of the stable radiation-induced signal in nails: highfield EPR, confirming chemical synthesis, quantum chemical calculations. Radiation Protection Dosimetry, 2016, 172(1-3): 112-120

[15] Marciniak A, Ciesielski B. EPR dosimetry in nails - a review. Applied Spectroscopy Reviews, 2016, 51(1): 73-92

[16] Savenkov S, Priezzhev A, Oberemok Y, Sholom S, Kolomiets I, Chunikhina K. Characterization of natural and irradiated nails by means of the depolarization metrics. Journal of Biomedical Optics, 2016, 21(7): 071108

[17] Gil J J, Bernabeu E. A depolarization criterion in Mueller matrices. Optica Acta, 1985, 32(3): 259-261

[18] Gil J J, Bernabeu E. Depolarization and polarization indexes of an optical system. Optica Acta, 1986, 33(2): 185-189

[19] Espinosa-Luna R, Bernabeu E. On the Q(M) depolarization metric. Optics Communications, 2007, 277(2): 256-258

[20] Ossikovski R. Alternative depolarization criteria for Mueller matrices. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2010, 27(4): 808-814

[21] Cloude S R, Pottier E. Concept of polarization entropy in optical scattering. Optical Engineering (Redondo Beach, Calif.), 1995, 34 (6): 1599-1610

[22] Cloude S R. Group theory and polarization algebra. Optik (Stuttgart), 1986, 7: 26-36

[23] Savenkov S N, Muttiah R S, Oberemok Y A. Transmitted and reflected scattering matrices from an English oak leaf. Applied Optics, 2003, 42(24): 4955-4962

[24] Savenkov S N, Mishchenko L T, Muttiah R S, Oberemok Y A, Mishchenko I A. Mueller polarimetry of virus-infected and healthy wheat under field and microgravity conditions. Journal of Quantitative Spectroscopy & Radiative Transfer, 2004, 88(1-3): 327-343

[25] Savenkov S N, Grygoruk V I, Muttiah R S, Yushtin K E, Oberemok Ye A, Yakubchak V V. Effective dichroism in forward scattering by inhomogeneous birefringent medium. Journal of Quantitative Spectroscopy & Radiative Transfer, 2009, 110(1-2): 30-42

[26] Ossikovski R. Analysis of depolarizing Mueller matrices through a symmetric decomposition. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 2009, 26(5): 1109-1118

[27] Williams M W. Depolarization and cross polarization in ellipsometry of rough surfaces. Applied Optics, 1986, 25(20): 3616-3622

[28] Lu S Y, Chipman R A. Interpretation of Mueller matrices based on polar decomposition. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 1996, 13(5): 1106-1113

[29] Savenkov S N. Optimization and structuring of the instrument matrix for polarimetric measurements. Optical Engineering (Redondo Beach, Calif.), 2002, 41(5): 965-972

[30] Gil J J, San José I. Reduced form of a Mueller matrix Journal of Modern Optics, 2016, 63(16): 1579-1583

Sergey SAVENKOV, Alexander V. PRIEZZHEV, Yevgen OBEREMOK, Sergey SHOLOM, Ivan KOLOMIETS. Characterization of irradiated nails in terms of depolarizing Mueller matrix decompositions[J]. Frontiers of Optoelectronics, 2017, 10(3): 308. Sergey SAVENKOV, Alexander V. PRIEZZHEV, Yevgen OBEREMOK, Sergey SHOLOM, Ivan KOLOMIETS. Characterization of irradiated nails in terms of depolarizing Mueller matrix decompositions[J]. Frontiers of Optoelectronics, 2017, 10(3): 308.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!