激光与光电子学进展, 2017, 54 (8): 081408, 网络出版: 2017-08-02   

基于扭转模腔的L形单纵模Tm, Ho∶YAG激光器

L-Shaped Single-Longitudinal-Mode Tm, Ho∶YAG Lasers Based on Twisted Mode Cavity
作者单位
1 洛阳电光设备研究所光电系统一部, 河南 洛阳 471009
2 哈尔滨工业大学可调谐激光技术国家重点实验室, 黑龙江 哈尔滨 150001
摘要
使用二极管抽运的L形扭转模腔实现了单纵模Tm, Ho∶YAG激光器, 自由运行时输出光谱在2090 nm附近有两个主要的振荡波段, 当抽运功率达到6.12 W时, 最大输出功率为483 mW。该单纵模激光器在5.9 W的抽运功率下, 在2090.9 nm处可产生202 mW的最大输出功率, 对应的抽运功率的斜率效率为6.95%。当抽运功率提高到5.9 W以上时, Tm, Ho∶YAG激光器开始多模式运行。用刀口法测量了单纵模Tm, Ho∶YAG激光器在几个位置的输出光束通过透镜后的半径。光束质量因子约为1.17。
Abstract
A single-longitudinal-mode Tm, Ho∶YAG laser is realized by using a diode-pumped L-shaped twisted mode cavity. There mainly exist two oscillator wavebands at around 2090 nm in the output spectrum of Tm, Ho∶YAG laser under free running. The maximum output power is 483 mW under pump power of 6.12 W. The single-longitudinal-mode laser possesses a maximum output power of 202 mW at 2090.9 nm under the pump power of 5.9 W, and the corresponding slope efficiency is 6.95%. When the pump power increases to over 5.9 W, the Tm, Ho∶YAG laser runs with multi modes. The output beam radii of single-longitudinal-mode Tm, Ho∶YAG laser are measured with knife-edge method at several positions after the beams pass through a lens. The beam quality factor is about 1.17.
参考文献

[1] Galli I, Bartalini S, Cancio P, et al. Mid-infrared frequency comb for broadband high precision and sensitivity molecular spectroscopy[J]. Opt Lett, 2014, 39(17): 5050-5053.

[2] Koch G J, Beyon J Y, Barnes B W, et al. High-energy 2 μm Doppler lidar for wind measurements[J]. Opt Eng, 2007, 46(11): 116201.

[3] Barria J B, Mammez D, Cadiou E, et al. Multispecies high-energy emitter for CO2, CH4, and H2O monitoring in the 2 μm range[J]. Opt Lett, 2014, 39(23): 6719-6722.

[4] Wulfmeyer V, Bsenberg J. Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar[J]. Opt Lett, 1996: 21(15): 1150-1152.

[5] Wu C T, Chen F, Ju Y L. A diode-pumped actively Q-switched and injection-seeded Tm∶LuAG laser at room temperature[J]. J Russ Laser Res, 2014, 35(4): 347-354.

[6] Dai T Y, Ju Y L, Duan X M, et al. Single-frequency, injection-seeded Q-switched operation of a resonantly pumped Ho∶YAlO3 laser at 2118 nm[J]. Appl Phys B, 2013, 111(1): 89-92.

[7] Budni P A, Knights M G, Chicklis E P, et al. Performance of a diode-pumped high PRF Tm, Ho∶YLF laser[J]. IEEE J Quantum Electron, 1992, 28(4): 1029-1032.

[8] Fei B J, Guo W, Huang J Q, et al. Spectroscopic properties and energy transfers in Cr, Tm, Ho triple-doped Y3Al5O12 transparent ceramics[J]. Opt Mater Express, 2013, 3(12): 2037-2044.

[9] 刘 旭, 程 勇, 万 强, 等. 高温激光二极管抽运全固态激光器[J]. 中国激光, 2016, 43(7): 0701003.

    Liu Xu, Cheng Yong, Wan Qiang, et al. High temperature laser diode pumped all-solid-state laser[J]. Chinese J Lasers, 2016, 43(7): 0701003.

[10] 郭新军, 蔡京辉, 梁惊涛, 等. 2 μm波长红外风冷固体激光器首次实现2 W级平均功率单频基模输出[J]. 中国激光, 2015, 42(11): 1119001.

[11] 韩 隆, 苑利钢, 陈 国, 等. 26 W中波红外固体激光器[J]. 中国激光, 2015, 42(3): 0302004.

    Han Long, Yuan Ligang, Chen Guo, et al. 26 W mid-infrared solid-state laser[J]. Chinese J Lasers, 2015, 42(3): 0302004.

[12] Singh U N, Walsh B M, Yu J R, et al. Twenty years of Tm, Ho∶YLF and LuLiF laser development for global wind and carbon dioxide active remote sensing[J]. Opt Mater Express, 2015, 5(4): 827-837.

[13] Yao B Q, Chen F, Zhang C H, et al. Room temperature single-frequency output from a diode-pumped Tm, Ho∶YAP laser[J]. Opt Lett, 2011, 36(9): 1554-1556.

[14] Zhang X L, Zhang S, Wang C Y, et al. Orthogonally polarized dual-wavelength single-longitudinal-mode Tm, Ho∶LLF laser[J]. Opt Express, 2013, 21(19): 22699-22704.

[15] Wang L, Cai X W, Yang J W, et al. 520 mJ langasite electro-optically Q-switched Cr, Tm, Ho∶YAG laser[J]. Opt Lett, 2012, 37(11): 1986-1988.

[16] Buryy O A, Sugak D Y, Ubizskii S B, et al. The comparative analysis and optimization of the free-running Tm3+∶YAP and Tm3+∶YAG microlasers[J]. Appl Phys B, 2007, 88(3): 433-442.

[17] Ju Y L, Wang Q, Wu C T, et al. Lasing characteristics of a single frequency Tm∶YAG laser[J]. Laser Phys, 2010, 19(6): 1216-1219.

[18] 崔庆哲, 魏蒙恩, 凌 琳, 等. 水雾对调Q Er∶YAG激光消融牙本质阈值及损伤的影响[J]. 中国激光, 2016, 43(12): 1201003.

    Cui Qingzhe, Wei Meng′en, Ling Lin, et al. Effect of water mist on threshold and damage of dentin ablation with Q-switched Er∶YAG laser[J]. Chinese J Lasers, 2016, 43(12): 1201003.

[19] 董 剑, 刘学胜, 司汉英, 等. 350 mJ LD侧面抽运Nd∶YAG无水冷调Q激光器[J]. 中国激光, 2016, 43(11): 1101005.

    Dong Jian, Liu Xuesheng, Si Hanying, et al. 350 mJ LD side-pumped Q-switched Nd∶YAG laser without water cooling[J]. Chinese J Lasers, 2016, 43(11): 1101005.

[20] Rothacher T, Luthy W, Weber H P. Spectral properties of a Tm, Ho∶YAG laser in active mirror configuration[J]. Appl Phys B, 1998, 66(5): 543-546.

[21] Mark E S, Wayne W R. Single-longitudinal-mode lasing of Ho: Tm∶YAG at 2.091 μm[J]. Appl Opt, 1989, 28(23): 4965-4967.

[22] Laporta P, Bava E, Svelto C, et al. Measurement and characterization of the frequency noise of a laser-diode-pumped single-frequency Tm-Ho∶YAG laser[J]. Opt Quant Electron, 2000, 32(9): 1081-1095.

[23] Laporta P, Marano M, Pallaro L, et al. Amplitude and frequency stabilization of a Tm-Ho∶YAG laser for coherent lidar applications at 2.1 mm[J]. Opt Laser Eng, 2002, 37(5): 447-457.

[24] Henderson S W, Hale C P. Tunable single-longitudinal-mode diode laser pumped Tm, Ho∶YAG laser[J]. Appl Opt, 1990, 29(12): 1716-1718.

[25] He C, Killinger D K. Dual-polarization modes and self-heterodyne noise in a single-frequency 2.1 microchip Ho, Tm∶YAG laser[J]. Opt Lett, 1994, 19(6): 396-398.

[26] Lin Z, Gao C, Gao M Y, et al. Diode-pumped single-frequency microchip CTH∶YAG lasers using different pump spot diameters[J]. Appl Phys B, 2009, 94(1): 81-84.

[27] Dai T Y, Ju Y L, Yao B Q, et al. Single-frequency, Q-switched Ho∶YAG laser at room temperature injection-seeded by two F-P etalons-restricted Tm, Ho∶YAG laser[J]. Opt Lett, 2012, 37(11): 1850-1852.

[28] Evtuhov V, Siegman A E. A twisted-mode technique for obtaining axially uniform energy density in a laser cavity[J]. Appl Opt, 1965, 4(1): 142-143.

李莉, 鞠有伦, 戴通宇, 陈方. 基于扭转模腔的L形单纵模Tm, Ho∶YAG激光器[J]. 激光与光电子学进展, 2017, 54(8): 081408. Li Li, Ju Youlun, Dai Tongyu, Chen Fang. L-Shaped Single-Longitudinal-Mode Tm, Ho∶YAG Lasers Based on Twisted Mode Cavity[J]. Laser & Optoelectronics Progress, 2017, 54(8): 081408.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!