激光与光电子学进展, 2014, 51 (1): 011102, 网络出版: 2013-12-20  

偏振态和有效数值孔径对共聚焦全内反射显微术分辨率的影响 下载: 624次

Effects of Polarization State and Effective Numerical Aperture on the Resolution in Confocal Total Internal Reflection Microscopy
魏通达 1,2,3,*张运海 3肖昀 1,2,3唐玉国 1,3
作者单位
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
3 中国科学院苏州生物医学工程技术研究所, 江苏 苏州 215163
摘要
为了研究入射光偏振态和入射光瞳有效数值孔径对共聚焦全内反射显微术(CTIRM)的分辨率,即焦点横向半峰全宽和纵向倏逝场透射深度的影响,根据Richard-Wolf矢量衍射理论,计算并讨论了线偏振、圆偏振、径向偏振和切向偏振入射光在界面处的光强分布情况;同时计算了在三种不同的有效数值孔径(1.33~1.45,1~1.45和1~1.12)时,焦点半峰全宽和倏逝场透射深度的数值结果。计算结果表明,当有效数值孔径为1.33~1.45,入射波长为532 nm时,径向偏振光在横向上可达144 nm的半峰全宽,优于线偏振的330 nm和圆偏振的360 nm,超过了衍射极限。薄且大的有效数值孔径能够获得更小的半峰全宽,其上下限的平方差越大,透射深度越小。三种数值孔径中,1~1.45时的透射深度最小,为140 nm。相比较其他偏振光,径向偏振光更适合作为共聚焦全内反射显微术的入射激发光,并能够通过优化有效数值孔径,获得样品近表面处的高横向分辨率和低轴向荧光噪声。
Abstract
In order to study the effects of polarization state and effective numerical aperture on the focal full-width at half-maximum (FWHM) and evanescent depth in confocal total internal reflection Microscopy(CTIRM), according to the Richard-Wolf theory, the intensity distribution in the interface is calculated and discussed with linearly, circularly, radially and azimuthally polarized beams, respectively. Meanwhile, the numerical calculations of FWHM and depth are researched for three different effective numerical apertures (1.33~1.45, 1~1.45 and 1~1.12, respectively). The results indicate that the FWHM of radially polarized beam is 144 nm, breaking through the limitation of diffraction, which is also better than 330 nm of linearly and 360 nm of circularly polarized ones, by using 532 nm incident wave and 1.33~1.45 aperture. The sharper focuscan be got with the larger and thinner aperture. Also the smaller depth of transmission can be got with the larger difference of squares of upper and lower limits, for which 140 nm is the shallowest depth with 1~1.45 aperture. Compared to other polarizations, radially polarized beam is the most suitable choice for CTIRM. And by optimizing the effective numerical aperture, high horizontal resolutions and low axial fluorescent noise near the sample surfacecan be obtained simultaneously.
参考文献

[1] Jensen E C. Types of imaging, part 2: an overview of fluorescence Microscopy[J]. Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology, 2012, 295(10): 1621-1627.

[2] W E Trotman, D J Taatjes, E G Bovill. Multifluorescence confocal microscopy: application for a quantitative analysis of hemostatic proteins in human venous valves[J]. Methods in Molecular Biology, 2013,931: 85-95.

[3] B V R Tata, B Raj. Confocal laser scanning microscopy: applications in material science and technology [J]. Bulletin of Materials Science, 1998, 21(4): 263-278.

[4] Jpawley. Fundamental Limits in Confocal Microscopy. In: J B pawley (ed.). Handbook of Biological Confocal Microscopy, (2nd ed.)[M]. New York: Plenum, 1995. 19-37.

[5] Axelrod D. Total internal reflection fluorescence microscopy [J]. Methods in Cell Biology, 2008, 89: 169-221.

[6] M K Loder, T Tsuboi, G A Rutter. Live-cell imaging of vesicle trafficking and divalent metal ions by total internal reflection fluorescence (TIRF) microscopy [J]. Methods in Molecular Biology, 2013, 950: 13-26.

[7] Vizcay-Barrena G, Stephen E D, Martin-Fernandez M L, et al.. Subcellular and single-molecule imaging of plant fluorescent proteins using total internal reflection fluorescence microscopy (TIRFM) [J]. J Experimental Botany, 2011, 62(15): 5419-5428.

[8] Meunier A, Jouannot O, Fulcrand R, et al.. Coupling amperometry and total internal reflection fluorescence microscopy at ITO surfaces for monitoring exocytosis of single vesicles [J]. Angewandte Chemie-International Edition, 2011, 50(22): 5081-5084.

[9] Wan Y, Ill W M A, Fan L, et al.. Variable-angle total internal reflection fluorescence microscopy of intact cells of Arabidopsis thaliana [J]. Plant Methods, 2011, 7: 27.

[10] J W M Chon, M Gu. Scanning total internal reflection fluorescence microscopy under one-photon and two-photon excitation: image formation [J]. Appl Opt, 2004, 43(5): 1063-1071.

[11] T Ruckstuhl, S Seeger. Attoliter detection volumes by confocal total-internal-reflection fluorescence microscopy [J]. Opt Lett, 2004, 29(6): 569-571.

[12] T P Burghardt, K Ajtai, J Borejdo. In situ single-molecule imaging with attoliter detection using objective total internal reflection confocal microscopy [J]. Biochemistry, 2006, 45(13): 4058-4068.

[13] B Richards, E Wolf. Electromagnetic diffraction in optical systems.2. Structure of the image field in an aplanatic system [J]. Proc R Soc Lond A, 1959, 253(1274): 358-379.

[14] M J Nasse, J C Woehl. Realistic modeling of the illumination point spread function in confocal scanning optical microscopy[J]. J Opt Soc Am A, 2010, 27(2): 295-302.

[15] Watanabe K, Horiguchi N, Kano H, et al.. Optimized measurement probe of the localized surface plasmon microscope by using radially polarized illumination [J]. Appl Opt, 2007, 46(22): 4985-4990.

[16] Kenny F, Lara D, Rodriguez-Herrera O G, et al.. Complete polarization and phase control for focus-shaping in high-NA microscopy [J]. Opt Express, 2012, 20(13): 14015-14029.

[17] Fan F, Du T, Srivastava A K, et al.. Axially symmetric polarization converter made of patterned liquid crystal quarter wave plate[J]. Opt Express, 2012, 20(21): 23036-23043.

[18] 程 侃, 谭峭峰, 周哲海, 等. 径向偏振光三维超分辨衍射光学元件设计[J]. 光学学报, 2010, 30(11): 3295-3299.

    Cheng Kan,Tan Qiaofeng,Zhou Zhehai, et al.. Design of three-dimensional superresolution diffractive optical elements for Radially Polarized Beam[J]. Acta Optica Sinica, 2010, 30(11): 3295-3299.

[19] 王轶凡, 匡翠方, 顾兆泰, 等. 基于相干涡旋位相调制的偏振可调柱状矢量偏振光的产生[J]. 光学学报, 2013, 33(10): 1005001.

    Wang Yifan, Kuang Cuifang, Gu Zhaotai, et al.. Generation of polarization-adjustable cylindrical vector beams based on vortex phase modulation and interference[J]. Acta Optica Sinica, 2013, 33(10): 1005001.

[20] 黄 妍, 叶红安, 高来勖, 等. 矢量偏振光束产生新方法[J]. 中国激光, 2012, 39(4): 0402004.

    Huang Yan, Ye Hong′an, Gao Laixu, et al.. New method of generating vectorial polarized beams[J]. Chinese Lasers, 2012: 39(4): 0402004.

[21] 郭 玲, 李劲松. 余弦型相位光瞳滤波器缩小径向偏振光焦斑[J]. 激光与光电子学进展, 2012, 49(12): 121001.

    Guo Ling,Li Jinsong. Phase pupil filter with cosine function for sharper focus of radially polarized beam[J]. Laser & Optoelectronics Progress, 2012, 49(12): 121001.

[22] 陈慧芳, 刘 涛, 张在宣. 连续相位滤波器缩小径向偏振光束焦斑[J]. 中国激光, 2012, 39(6): 0616001.

    Chen Huifang, Liu Tao, Zhang Zaixuan. Shaper focus of radially polarized beam with a continuous phase filter[J]. Chinese J Lasers, 2012, 39(6): 0616001.

魏通达, 张运海, 肖昀, 唐玉国. 偏振态和有效数值孔径对共聚焦全内反射显微术分辨率的影响[J]. 激光与光电子学进展, 2014, 51(1): 011102. Wei Tongda, Zhang Yunhai, Xiao Yun, Tang Yuguo. Effects of Polarization State and Effective Numerical Aperture on the Resolution in Confocal Total Internal Reflection Microscopy[J]. Laser & Optoelectronics Progress, 2014, 51(1): 011102.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!