中国激光, 2018, 45 (9): 0901001, 网络出版: 2018-09-08   

用于Hg原子光晶格钟的低漂移率超稳腔系统 下载: 1036次

Ultra-Stable Cavity System with Low Drift Rate for Mercury Optical Lattice Clock
付小虎 1,2,3方苏 1,3赵儒臣 1,3孙剑芳 1,3张晔 1,2,3徐震 1,2,3王育竹 1,2,3
作者单位
1 中国科学院上海光学精密机械研究所, 上海 201800
2 中国科学院大学, 北京 100049
3 中国科学院量子光学重点实验室, 上海 201800
引用该论文

付小虎, 方苏, 赵儒臣, 孙剑芳, 张晔, 徐震, 王育竹. 用于Hg原子光晶格钟的低漂移率超稳腔系统[J]. 中国激光, 2018, 45(9): 0901001.

Fu Xiaohu, Fang Su, Zhao Ruchen, Sun Jianfang, Zhang Ye, Xu Zhen, Wang Yuzhu. Ultra-Stable Cavity System with Low Drift Rate for Mercury Optical Lattice Clock[J]. Chinese Journal of Lasers, 2018, 45(9): 0901001.

参考文献

[1] McFerran J J, Yi L, Mejri S, et al. . Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty=5.7×10 -15[J]. Physical Review Letters, 2012, 108(18): 1803004.

[2] Nicholson T L, Campbell S L, Hutson R B, et al. Systematic evaluation of an atomic clock at 2×10 -18 total uncertainty [J]. Nature Communications, 2015, 6(1): 6896.

[3] Ushijima I, Takamoto M, Das M, et al. Cryogenic optical lattice clocks[J]. Nature Photonics, 2015, 9(3): 185-189.

[4] Abgrall M. Chupin B, de Sarlo L, et al. Atomic fountains and optical clocks at SYRTE: status and perspectives[J]. Comptes Rendus Physique, 2015, 16(5): 461-470.

[5] Hinkley N, Sherman J A, Phillips N B, et al. An atomic clock with 10 -18 instability [J]. Science, 2013, 341(6151): 1215-1218.

[6] Schioppo M, Brown R C. McGrew W F, et al. Ultrastable optical clock with two cold-atom ensembles[J]. Nature Photonics, 2016, 11(1): 48-52.

[7] Peil S, Hanssen J L, Swanson T B, et al. Evaluation of long term performance of continuously running atomic fountains[J]. Metrologia, 2014, 51(3): 263-269.

[8] 董功勋, 林锦达, 张松, 等. 脉冲光抽运原子钟原子相位反馈研究[J]. 光学学报, 2017, 37(7): 0702001.

    Dong G X, Lin J D, Zhang S, et al. Research on atomic phase feedback in pulsed optically pumped atomic clocks[J]. Acta Optica Sinica, 2017, 37(7): 0702001.

[9] 刘鹏, 成华东, 孟艳玲, 等. 积分球冷原子钟相位调制Ramsey条纹研究[J]. 中国激光, 2016, 43(11): 1112001.

    Liu P, Cheng H D, Meng Y L, et al. Research on phase modulation of Ramsey fringes in integrating sphere cold atom clocks[J]. Chinese Journal of Lasers, 2016, 43(11): 1112001.

[10] Huntemann N, Sanner C, Lipphardt B, et al. Single-ion atomic clock with 3×10 -18 systematic uncertainty [J]. Physical Review Letters, 2016, 116(6): 063001.

[11] Huang Y, Guan H, Liu P, et al. Frequency comparison of two 40Ca + optical clocks with an uncertainty at the 10 -17 level [J]. Physical Review Letters, 2016, 116(1): 013001.

[12] Chou C W, Hume D B. Koelemeij J C J, et al. Frequency comparison of two high-accuracy Al + optical clocks [J]. Physical Review Letters, 2010, 104(7): 070802.

[13] Beloy K P, Hinkley N M, Phillips N B, et al. Atomic clock with 1×10 -18 room-temperature blackbody stark uncertainty [J]. Physical Review Letters, 2014, 113(26): 260801.

[14] Porsev S G, Derevianko A. Multipolar theory of blackbody radiation shift of atomic energy levels and its implications for optical lattice clocks[J]. Physical Review A, 2006, 74(2): 020502.

[15] Rosenband T, Schmidt P O, Hume D B, et al. Observation of the 1S0→ 3P0 clock transition in 27Al + [J]. Physical Review Letters, 2007, 98(22): 220801.

[16] Young B C, Cruz F C, Itano W M, et al. Visible lasers with subhertz linewidths[J]. Physical Review Letters, 1999, 82(19): 3799-3802.

[17] Drever R W P, Hall J L, Kowalski F V, et al. . Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 1983, 31(2): 97-105.

[18] Numata K, Kemery A, Camp J. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities[J]. Physical Review Letters, 2004, 93(25): 250602.

[19] Martin MJ. Quantum metrology and many-body physics: pushing the frontier of the optical lattice clock[D]. Colorado: University of Colorado, 2013: 67- 89.

[20] Zhang J, Wu W, Shi X H, et al. Design verification of large time constant thermal shields for optical reference cavities[J]. Review of Scientific Instruments, 2016, 87(2): 023104.

[21] Bergquist JC, Itano WM, Wineland DJ. Laser stabilization to ion[C]∥Hansch T W, Inguscio M. Proceedings of the International School of Physics 《Enrico Fermi》.1994: 359- 376.

[22] 刘洋. 超稳激光中亚毫开尔文量级温度的精密控制[D]. 武汉: 华中科技大学, 2015: 11- 12.

    LiuY. Sub-mK temperature control for ultrastable laser systems[D]. Wuhan: Huazhong University of Science and Technology, 2015: 11- 12.

[23] Prestage JD, Dick GJ, MalekiL. The JPL trapped ion frequency standard development[C]∥Proceedings of the 19th Annual Precise Time and Time Interval Systems and Applications Meeting.1987: 285- 297.

[24] Santarelli G, Audoin C, Makdissi A, et al. Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1998, 45(4): 887-894.

[25] Quessada A, Kovacich R P, Courtillot I N, et al. The Dick effect for an optical frequency standard[J]. Journal of Optics B: Quantum and Semiclassical Optics, 2003, 5(2): S150-S154.

[26] Jiang HF. Development of ultra-stable laser sources and long-distance optical link via telecommunication networks[D]. Paris: University of Paris, 2010: 22- 23.

[27] Madhavan U P K, Gunasekaran M K, Kumar A. ±30 μK temperature controller from 25 to 103 ℃: study and analysis[J]. Review of Scientific Instruments, 2003, 74(1): 231-242.

[28] Wu L F, Jiang Y Y, Ma C Q, et al. 0.26-Hz-linewidth ultrastable lasers at 1557 nm[J]. Scientific Reports, 2016, 6: 24969.

[29] 陈海琴. 光学频率合成关键技术研究[D]. 上海: 华东师范大学, 2014: 32- 33.

    Chen HQ. Research on the key technology of the optical frequency synthesis[D]. Shanghai: East China Normal University, 2014: 32- 33.

[30] Bian W, Huang Y, Guan H, et al. 1 Hz linewidth Ti∶sapphire laser as local oscillator for 40Ca + optical clocks [J]. Review of Scientific Instruments, 2016, 87(6): 063121.

[31] Liu H, Zhang X, Jiang K L, et al. Realization of closed-loop operation of optical lattice clock based on 171Yb [J]. Chinese Physics Letters, 2017, 34(2): 020601.

[32] Liu H L, Yin S Q, Liu K K, et al. Magneto-optical trap for neutral mercury atoms[J]. Chinese Physics B, 2013, 22(4): 043701.

[33] Liu K K, Zhao R C, Gou W, et al. A single folded beam magneto-optical trap system for neutral mercury atoms[J]. Chinese Physics Letters, 2016, 33(7): 070602.

[34] Alnis J, Matveev A, Kolachevsky N, et al. Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities[J]. Physical Review A, 2008, 77(5): 053809.

付小虎, 方苏, 赵儒臣, 孙剑芳, 张晔, 徐震, 王育竹. 用于Hg原子光晶格钟的低漂移率超稳腔系统[J]. 中国激光, 2018, 45(9): 0901001. Fu Xiaohu, Fang Su, Zhao Ruchen, Sun Jianfang, Zhang Ye, Xu Zhen, Wang Yuzhu. Ultra-Stable Cavity System with Low Drift Rate for Mercury Optical Lattice Clock[J]. Chinese Journal of Lasers, 2018, 45(9): 0901001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!