作者单位
摘要
1 北京理工大学 光电学院,北京 100081
2 北京遥测技术研究所,北京 100084
载波调制水下探测激光雷达利用散射光和信号光在频域特性上的差异来抑制杂散光,而不同水质中的散射光的截止频率是载波调制水下探测激光雷达设计中的重要参数。测量散射杂波的频率响应需要将目标回波与散射杂波分开,尤其是前向散射,与目标回波空间上重合,不容易被分开。文中提出了一种在载波强度调制激光雷达中分别测量水下目标和散射杂波的频率响应方法,利用散射光和目标反射的信号光在空间相干性上的差异,在回波光路上使用螺旋相位板将其分开并分别采集,再通过傅里叶变换得到它们的频谱。实验结果表明,前向散射杂波具有低通特性,而目标回波的响应是平坦的。将信号与散射在频谱中调制频率处的幅度之比定义为“信杂比”,并且用其来表示探测的有效性:当信杂比大于1时,认为探测到了目标。在较浑浊的水中,为了获得大于1的信杂比,载波的调制频率需要更高,基于蒙特卡洛方法对光子在海水中的传播进行了仿真模拟,结果与实验相符。测距实验也证明了,提高调制频率可以减小浑浊水中的测距误差。当信杂比小于1时,提高调制频率,测距误差降低明显。
散射杂波 涡旋光 频率响应 载波调制 scattering clutters vortex beam frequency response carrier modulation 
红外与激光工程
2023, 52(9): 20220831
刘琪鑫 1,2张晔 1,2孙剑芳 1徐震 1,2,*
作者单位
摘要
1 中国科学院上海光学精密机械研究所量子光学重点实验室,上海 201800
2 中国科学院大学,北京 100049
介绍了一种利用光锁相环技术实现频率稳定的深紫外激光系统,包含两台253.7 nm四倍频激光器,用于汞原子在二维磁光阱和三维磁光阱的激光冷却。其中,一台深紫外激光器锁定在汞原子的饱和吸收谱线上,用于产生二维磁光阱的冷却光和推送光;另一台深紫外激光器通过1014.9 nm的半导体种子激光之间的光锁相环实现频率稳定,用于产生三维磁光阱的冷却光和探测光,并通过前馈方法将频率切换时间减小到原来的1/23。该系统可以大范围地调整深紫外激光器的频率,高效地利用紫外激光功率,并降低了实验装置的复杂性,从而满足了汞原子激光冷却实验的要求。同时,所提方法适用于其他深紫外激光系统。
激光器 汞原子 激光冷却 深紫外激光 光锁相环 
中国激光
2023, 50(7): 0701003
作者单位
摘要
1 天津大学精密仪器与光电子工程学院光纤光学及光通信实验室, 天津 300072
2 天津光电集团有限公司, 天津 300384
报道了一种基于非线性光纤环形镜的工作在耗散孤子共振(DSR)区域的被动锁模掺铒光纤激光器,分别在反常和正常色散区获得了方波脉冲输出。在腔内净色散值约为-0.32ps 2的反常色散区,当泵浦功率为481.2mW时,获得了最大时域宽度为33ns、单脉冲能量约为12.4nJ的方波脉冲。通过在腔内插入一段7m长的色散补偿光纤,使激光器工作在腔内净色散值约为2.85ps 2的正常色散区,在同样的泵浦条件下,获得了最大时域宽度为34.3ns、单脉冲能量约为9.42nJ的方波脉冲。这表明在满足腔内参数平衡的条件下,DSR方波脉冲可同时在反常和正常色散区产生。另外,还研究了泵浦功率对方波脉冲的时域宽度和单脉冲能量的影响,结果表明,随着泵浦功率的增加,方波脉冲的时域宽度和单脉冲能量均呈线性变化。
激光器 光纤激光器 耗散孤子共振 方波脉冲 非线性光纤环形镜 色散管理 
中国激光
2020, 47(12): 1201006
付小虎 1,2,3方苏 1,3赵儒臣 1,3孙剑芳 1,3[ ... ]王育竹 1,2,3
作者单位
摘要
1 中国科学院上海光学精密机械研究所, 上海 201800
2 中国科学院大学, 北京 100049
3 中国科学院量子光学重点实验室, 上海 201800
光晶格钟需要高稳定度的超稳激光, 而超稳激光的频率稳定性受限于超稳腔的热噪声和温度涨落, 因此, 降低超稳腔的温度涨落对于超稳激光的频率噪声达到热噪声极限具有重要意义。分别从时域和频域上分析了达到热噪声极限对超稳腔温度稳定性的要求, 设计了超稳腔控温系统, 其包括一层被动隔热、两层主动控温的超稳腔真空系统和主动控温装置; 找到了超稳腔的零膨胀工作温度; 测量了真空隔热系统的温度传递时间常数(3.6 d); 监测了真空腔内主动控温层11 d的温度涨落(<1 mK)。通过实验测量和理论分析, 在频域和时域上分别计算得到了超稳腔的温度波动, 确定了千秒内的温度涨落引起的频率噪声均在热噪声极限以下。利用磁光阱产生的199Hg冷原子的钟频跃迁光谱测得超稳腔的长期温度漂移为4.2 kHz/d, 符合Hg原子光晶格钟的要求。
激光光学 超稳激光 温度稳定 钟频跃迁 长期漂移 
中国激光
2018, 45(9): 0901001
Xiaohu Fu 1,2,3Su Fang 1,2Ruchen Zhao 1,2Ye Zhang 1,2,3[ ... ]Yuzhu Wang 1,2,3,4
Author Affiliations
Abstract
1 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Key Laboratory of Quantum Optics, Chinese Academy of Sciences, Shanghai 201800, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
4 Center of Cold Atom Physics, Chinese Academy of Sciences, Shanghai 201800, China
We report on the observation of the highly forbidden S10P30 optical clock transition in laser-cooled Hg199 atoms. More than 95% depletion of cold Hg199 atoms is detected in the magneto-optical trap. Using the free-of-field detection method, the AC Stark shift from the cooling laser is removed from the in-field spectroscopy. At low-power clock laser pumping, the linewidth of the clock spectroscopy is approximately 450 kHz (full width at half-maximum), which corresponds to a Doppler broadening at the atom temperature of 60 μK. We determine the S10P30 transition frequency to be 1,128,575,290.819(14) MHz by referencing with a hydrogen maser and measuring with a fiber optical frequency comb. Moreover, a weak Doppler-free signal is observed.
020.1335 Atom optics 
Chinese Optics Letters
2018, 16(6): 060202
赵儒臣 1,2,3,*付小虎 1,2,3孙剑芳 1,2徐震 1,2王育竹 1,2
作者单位
摘要
1 中国科学院上海光学精密机械研究所, 上海 201800
2 中国科学院量子光学重点实验室和冷原子物理中心, 上海 201800
3 中国科学院大学, 北京 100049
详细介绍了基于1014.8 nm室温光纤激光放大器的高效外腔倍频技术, 获得了大功率的507.4 nm单频激光。高效的外腔倍频是由内置正入射三硼酸锂晶体的高增益环形腔实现的, 最高可以获得3 W的输出功率, 倍频效率高达61.5%。倍频腔输入输出功率的实验测量值与理论计算结果相符合。该倍频腔针对4 W的基频光输入设计, 在最佳工作点(4W)附近倍频效率对输入功率改变不敏感。在1.5 h内, 绿光输出功率涨落的均方根值为1.7%。大功率稳定输出的507.4 nm单频激光可通过偏硼酸钡晶体倍频产生用于冷却中性汞原子所需的253.7 nm深紫外激光, 也可直接用于探测镱原子1S0态到3P2态跃迁的光谱和相关实验。
激光光学 绿光 二次谐波产生 环形腔 三硼酸锂晶体 非线性光学 
中国激光
2017, 44(7): 0701001
Xiaohu Fu 1,2Kangkang Liu 1,2Ruchen Zhao 1,2Wei Gou 1,2[ ... ]Yuzhu Wang 1,2,3
Author Affiliations
Abstract
1 Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Science, Beijing 100049, China
3 Center for Cold Atom Physics, Chinese Academy of Sciences, Shanghai 201800, China
We experimentally observe polarization spectroscopy (PS) of the S01-P31 transition of mercury atom gases at 253.7 nm. The PS signal can be observed in all six richly abundant isotopes and the PS signal of six transitions for laser cooling are all clear and of a dispersive line shape. The optimized pump power and probe power are found for the PS of Hg202. We find the linearly polarized component in the pump beam will distort the original PS signal due to the use of linear PS. Consequently, the purity of the pump beam is crucial to laser frequency stabilization by PS.
300.6210 Spectroscopy, atomic 300.6310 Spectroscopy, heterodyne 
Chinese Optics Letters
2015, 13(7): 073001
刘亢亢 1,2,*刘洪力 1,2赵儒臣 1,2付小虎 1,2[ ... ]王育竹 1,3
作者单位
摘要
1 中国科学院上海光学精密机械所中国科学院量子光学重点实验室, 中国科学院冷原子物理中心, 上海 201800
2 中国科学院大学, 北京 100049
3 中国科学院上海高等研究院, 上海 201203
连续可调谐的紫外激光一般通过红外或可见激光进行外腔倍频获得,然而倍频腔锁定电路的带宽限制了激光器的调谐性能。将前馈控制方法用于中性汞原子激光冷却的四倍频紫外激光器,即在调谐基频激光频率的同时,同步调节级联的两个倍频腔。这不仅降低了激光器频率调谐中引入的功率噪声,还提高了紫外激光器的频率调谐范围,使得紫外激光器的调谐能力得到大幅提高。通过汞原子的亚多普勒磁致双色光谱进行激光频率锁定,发现前馈控制电路的应用能降低激光的频率噪声。在汞原子光谱和激光冷却实验中,紫外激光的可调谐性和稳定性的提高将会带来很多优势。
激光器 四倍频 前馈控制方法 中性汞原子 激光冷却 相对功率噪声 
中国激光
2014, 41(12): 1202004
作者单位
摘要
武汉轻工大学 电气与电子工程学院, 湖北 武汉 430023
针对无线传感器网络中的高效能路由协议问题进行研究,详细分析了传统的分层路由协议LEACH(低功耗自适应集簇分层)的簇首选取原则和成簇算法,并指出该算法存在的局限性。针对簇首节点的位置不同,提出了簇首间进行多跳中继转发的改进算法,并对此算法进行了仿真实验,结果证明,改进算法的网络生存时间要优于传统的LEACH算法。
无线传感器网络 路由协议 低功耗自适应集簇分层 簇首 wireless sensor network routing protocol LEACH cluster head 
光通信研究
2014, 40(1): 67
作者单位
摘要
1 中国科学院上海光学精密机械研究所, 上海 201800
2 中国科学院大学, 北京 100049
3 中国科学院上海高等研究院, 上海 201203
开发了一种用于253.7 nm深紫外激光器的低功耗频率调谐和锁频系统,这种锁频系统将在中性汞原子磁光阱中起到重要作用。该系统用两个级联的声光调制器分别做频率调谐和频率调制。利用该系统可将深紫外激光器的频率锁定在汞原子的1S0-3P1的能级跃迁上,并为汞原子的激光冷却节约了功率。同时通过解调频率调制激光的饱和吸收光谱观测了汞原子的调频光谱。采用该技术将紫外激光锁定在200Hg的1S0-3P1共振跃迁上,并且频率不稳定度低于0.1 MHz。
激光器 频率稳定 频率调制 激光冷却 深紫外激光 
中国激光
2013, 40(9): 0902005

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!