中国激光, 2018, 45 (9): 0901001, 网络出版: 2018-09-08   

用于Hg原子光晶格钟的低漂移率超稳腔系统 下载: 1037次

Ultra-Stable Cavity System with Low Drift Rate for Mercury Optical Lattice Clock
付小虎 1,2,3方苏 1,3赵儒臣 1,3孙剑芳 1,3张晔 1,2,3徐震 1,2,3王育竹 1,2,3
作者单位
1 中国科学院上海光学精密机械研究所, 上海 201800
2 中国科学院大学, 北京 100049
3 中国科学院量子光学重点实验室, 上海 201800
图 & 表

图 1. 超稳腔真空系统剖面图

Fig. 1. Sectional view of the ultra-stable cavity assembly

下载图片 查看原文

图 2. 温度主动控制电路原理图。(a)温度采集放大电路;(b) PID控制原理图

Fig. 2. Schematics of temperature stabilizer circuit. (a) Schematic of temperature collection and amplification circuit; (b) schematic of PID control circuit

下载图片 查看原文

图 3. 超稳腔在不同温度下的谐振频率

Fig. 3. Resonant frequency of ultra-stable cavity at different temperatures

下载图片 查看原文

图 4. 由光梳测量得到的谐振频率及由谐振频率计算得到的温度随时间的变化

Fig. 4. Variation of measured resonant frequency or calculated resonant frequency with time

下载图片 查看原文

图 5. (a)主动控温层不同测温点的温度;(b)实验室环境温度

Fig. 5. (a) Temperature at different positions of active temperature stabilized layer; (b) environmental temperature of laboratory

下载图片 查看原文

图 6. 主动控温层三个测温点的温度功率谱密度(实线)、根据传递函数计算得到的超稳腔的温度功率谱密度(虚线)及不同热膨胀系数(10-8 K-1和10-9 K-1)时为了达到热噪声极限而对温度功率谱密度的要求

Fig. 6. Temperature noise power spectrum density of three measuring points in the active temperature stabilized layer (solid line), temperature noise power spectrum density of three measuring points in the ultra-stable cavity (dotted line) calculated by transfer function, and the requirement of the temperature noise power spectrum density at 10-8 K-1and 10-9 K-1 to reach the thermal noise limit

下载图片 查看原文

图 7. (a)由主动控温层温度计算得到的超稳腔温度变化;(b)在主动控温层顶部、中间、底板三点测量的温度稳定度(实心点)、由主动控温层三点温度分别计算的超稳腔的温度稳定度(空心点)及10-8 K-1和10-9 K-1热膨胀系数下为了达到热噪声极限而对温度稳定度的要求(棕色、绿色线)

Fig. 7. (a) Temperature fluctuation of the ultra-stable cavity which calculated from the temperature of temperature stabilized layer; (b) temperature stability of the three point (middle, top, bottom) in stabilized layer (solid points), temperature stability of the ultra-stable cavity (hollow points) calculated from the temperature of the stabilized layer, and the requirement of the temperature stability at 10-8 K-1 and 10-9 K-1(brown line and green line) to reach the thermal noise limit

下载图片 查看原文

图 8. 199Hg冷原子钟频跃迁探测实验原理框图

Fig. 8. Experimental schematic of the clock transition detection of 199Hg cold atoms

下载图片 查看原文

图 9. (a)钟频跃迁光谱;(b)钟频激光频率漂移

Fig. 9. (a) Clock transition spectrum; (b) clock laser frequency drift

下载图片 查看原文

付小虎, 方苏, 赵儒臣, 孙剑芳, 张晔, 徐震, 王育竹. 用于Hg原子光晶格钟的低漂移率超稳腔系统[J]. 中国激光, 2018, 45(9): 0901001. Fu Xiaohu, Fang Su, Zhao Ruchen, Sun Jianfang, Zhang Ye, Xu Zhen, Wang Yuzhu. Ultra-Stable Cavity System with Low Drift Rate for Mercury Optical Lattice Clock[J]. Chinese Journal of Lasers, 2018, 45(9): 0901001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!