激光与光电子学进展, 2020, 57 (23): 232301, 网络出版: 2020-11-25   

基于石墨烯等离子体的宽带透射式红外光调制器 下载: 990次

Broadband Transmission Infrared Light Modulator Based on Graphene Plasma
袁志豪 1,2徐俞 3曹冰 1,2,*王钦华 1,2,*
作者单位
1 苏州大学光电科学与工程学院, 江苏 苏州 215006
2 教育部现代光学技术重点实验室, 江苏省先进光学制造技术重点实验室, 江苏 苏州 215006
3 中国科学院苏州纳米技术与纳米仿生研究所, 江苏 苏州 215123
引用该论文

袁志豪, 徐俞, 曹冰, 王钦华. 基于石墨烯等离子体的宽带透射式红外光调制器[J]. 激光与光电子学进展, 2020, 57(23): 232301.

Zhihao Yuan, Yu Xu, Bing Cao, Qinhua Wang. Broadband Transmission Infrared Light Modulator Based on Graphene Plasma[J]. Laser & Optoelectronics Progress, 2020, 57(23): 232301.

参考文献

[1] Khorasaninejad M, Shi Z, Zhu A Y, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 2017, 17(3): 1819-1824.

[2] Wang S, Wu P C, Su V C, et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3): 227-232.

[3] Qian Q Y, Sun T, Yan Y, et al. Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances[J]. Advanced Optical Materials, 2017, 5(13): 1700064.

[4] Suen J Y, Fan K B, Padilla W J. A zero-rank, maximum nullity perfect electromagnetic wave absorber[J]. Advanced Optical Materials, 2019, 7(8): 1801632.

[5] Liu A, Jones R, Liao L, et al. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor[J]. Nature, 2004, 427(6975): 615-618.

[6] Reed G T, Mashanovich G, Gardes F Y, et al. Silicon optical modulators[J]. Nature Photonics, 2010, 4(8): 518-526.

[7] Novoselov K S. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

[8] Fang Z Y, Liu Z, Wang Y M, et al. Graphene-antenna sandwich photodetector[J]. Nano Letters, 2012, 12(7): 3808-3813.

[9] Yao Y, Kats M A, Genevet P, et al. Broad electrical tuning of graphene-loaded plasmonic antennas[J]. Nano Letters, 2013, 13(3): 1257-1264.

[10] Li Q, Tian Z, Zhang X Q, et al. Active graphene-silicon hybrid diode for terahertz waves[J]. Nature Communications, 2015, 6(1): 7082.

[11] Li Q, Tian Z, Zhang X Q, et al. Dual control of active graphene-silicon hybrid metamaterial devices[J]. Carbon, 2015, 90: 146-153.

[12] Valmorra F, Scalari G, Maissen C, et al. Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial[J]. Nano Letters, 2013, 13(7): 3193-3198.

[13] Arezoomandan S. Condori Quispe H O, Ramey N, et al. Graphene-based reconfigurable terahertz plasmonics and metamaterials[J]. Carbon, 2017, 112: 177-184.

[14] 袁莹辉, 陈勰宇, 胡放荣, 等. 基于人工超表面/离子凝胶/石墨烯复合结构的太赫兹调幅器件[J]. 中国激光, 2019, 46(6): 0614016.

    Yuan Y H, Chen X Y, Hu F R, et al. Terahertz amplitude modulator based on metasurface/ion-gel/graphene hybrid structure[J]. Chinese Journal of Lasers, 2019, 46(6): 0614016.

[15] Fei Z, Rodin A S, Andreev G O, et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging[J]. Nature, 2012, 487(7405): 82-85.

[16] Yan H, Li X, Chandra B, et al. Tunable infrared plasmonic devices using graphene/insulator stacks[J]. Nature Nanotechnology, 2012, 7(5): 330-334.

[17] Furchi M, Urich A, Pospischil A, et al. Microcavity-integrated graphene photodetector[J]. Nano Letters, 2012, 12(6): 2773-2777.

[18] Liu J T, Liu N H, Li J, et al. Enhanced absorption of graphene with one-dimensional photonic crystal[J]. Applied Physics Letters, 2012, 101(5): 052104.

[19] 王磊, 栾开智, 左依凡, 等. 基于光学Tamm态的石墨烯光调制器[J]. 中国激光, 2018, 45(11): 1106001.

    Wang L, Luan K Z, Zuo Y F, et al. Graphene optical modulator based on optical tamm states[J]. Chinese Journal of Lasers, 2018, 45(11): 1106001.

[20] Cai Y J, Zhu J F, Liu Q H, et al. Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits[J]. Optics Express, 2015, 23(25): 32318-32328.

[21] Dabidian N, Kholmanov I, Khanikaev A B, et al. Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces[J]. ACS Photonics, 2015, 2(2): 216-227.

[22] Liu M, Yin X, Ulin-Avila E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64-67.

[23] 王少亮, 叶子威, 彭希亮, 等. 基于石墨烯的高效复合波导调制器研究[J]. 光学学报, 2018, 38(5): 0513003.

    Wang S L, Ye Z W, Peng X L, et al. Study of highly-efficient composite waveguide modulator based on graphene[J]. Acta Optica Sinica, 2018, 38(5): 0513003.

[24] Gao W L, Shu J, Qiu C Y, et al. Excitation of plasmonic waves in graphene by guided-mode resonances[J]. ACS Nano, 2012, 6(9): 7806-7813.

[25] Falkovsky L, Pershoguba S S. Optical far-infrared properties of a graphene monolayer and multilayer[J]. Physical Review B, 2007, 76(15): 153410.

[26] Petrone N, Dean C R, Meric I, et al. Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene[J]. Nano Letters, 2012, 12(6): 2751-2756.

[27] Liu W G, Hu B, Huang Z D, et al. Graphene-enabled electrically controlled terahertz meta-lens[J]. Photonics Research, 2018, 6(7): 703-708.

[28] Cheng J R, Fan F, Chang S J. Recent progress on graphene-functionalized metasurfaces for tunable phase and polarization control[J]. Nanomaterials, 2019, 9(3): 398.

[29] Wang W, Meng Z, Liang R S, et al. A dynamically tunable plasmonic multi-functional device based on graphene nano-sheet pair arrays[J]. Optics Communications, 2018, 415: 130-134.

[30] Zhu A J, Qian Q Y, Yan Y, et al. Ultrathin plasmonic quarter waveplate using broken rectangular annular metasurface[J]. Optics & Laser Technology, 2017, 92: 120-125.

袁志豪, 徐俞, 曹冰, 王钦华. 基于石墨烯等离子体的宽带透射式红外光调制器[J]. 激光与光电子学进展, 2020, 57(23): 232301. Zhihao Yuan, Yu Xu, Bing Cao, Qinhua Wang. Broadband Transmission Infrared Light Modulator Based on Graphene Plasma[J]. Laser & Optoelectronics Progress, 2020, 57(23): 232301.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!