强激光与粒子束, 2014, 26 (9): 091025, 网络出版: 2014-09-15   

飞秒激光烧蚀镍钛形状记忆合金的蚀除机理

Mechanism of femtosecond laser ablating NiTi shape memory alloy
作者单位
1 南华大学 电气工程学院, 湖南 衡阳 421001
2 南华大学 机械工程学院, 湖南 衡阳 421001
摘要
结合双温模型的分子动力学模拟方法,研究了飞秒激光脉冲辐照B2结构镍钛合金时烧蚀阈值附近的靶材蚀除机制,数值模拟了中心波长为800 nm,脉宽为100 fs,能量密度为25~50 mJ/cm2的激光与90 nm厚B2结构镍钛合金薄膜相互作用过程。确定了脉宽为100 fs的脉冲激光与镍钛形状记忆合金相互作用的烧蚀阈值,发现烧蚀阈值条件下,靶材的蚀除机制是单纯基于应力作用的机械破碎;烧蚀阈值附近,未蚀除靶材受热影响发生无序化相变的区域较小,且随激光能量密度的降低而减小。 提高激光功率密度,烧蚀同时呈现热机械蚀除和机械破碎机制。
Abstract
The mechanism of femtosecond(fs) laser ablating B2 NiTi alloy have been investigated by the molecular dynamic simulations combined with the two-temperature model. A series of simulations have been conducted, in which ,the laser used is 800 nm in central wavelength, 100 fs in pulse duration, and from 25 mJ/cm2 to 50 mJ/cm2 at fluence. The target is 90 nm in depth. The fluence threshold for 100 fs pulsed laser ablating NiTi shape memory alloy is determined, and it is found that the target irradiated by threshold fluence is ablated wholly due to the tensile and the heat induced phase change area is the smallest. When the fluence is improved, the phase change area expanded.
参考文献

[1] Alvarez-Puebla R, Liz-Marzn L M, García de Abajo F J. Light concentration at the nanometer scale[J]. The Journal of Physical Chemistry Letters, 2010, 1(16): 2428-2434.

[2] Liu Chang, Li Feng, Ma Laipeng, et al. Advanced materials for energy storage[J]. Advanced Materials, 2010, 22(8): E28-E62.

[3] Wang Xudong. Piezoelectric nanogenerators-harvesting ambient mechanical energy at the nanometer scale[J]. Nano Energy, 2012, 1(1): 13-24.

[4] Hu Renzong, Zhu Min, Wang Hui, et al. Sn buffered by shape memory effect of NiTi alloys as high-performance anodes for lithium ion batteries[J]. Acta Materialia, 2012, 60(12): 4695-4703.

[5] Fu Yongqing, Du Hejun, Huang Weimin, et al. TiNi-based thin films in MEMS applications: a review[J]. Sensors and Actuators A: Physical, 2004, 112(2): 395-408.

[6] Bansiddhi A, Sargeant T D, Stupp S I, et al. Porous NiTi for bone implants: a review[J]. Acta Biomaterialia, 2008, 4(4): 773-782.

[7] 杨建军.飞秒激光超精细“冷”加工技术及其应用(I) [J].激光与光电子学进展,2004, 41(3): 42-52.(Yang Jianjun .Femtosecond laser “Cold” micro-machining and its advanced applications. Laser & Optoelectronics Progress, 2004, 41(3): 42-52)

[8] Goldman J R, Prybyla J A. Ultrafast dynamics of laser-excited electron distributions in silicon[J]. Physical Review Letters, 1994, 72(9): 1364-1368.

[9] 江伟华 .高重复频率脉冲功率技术及其应用: (1) 概述[J]. 强激光与粒子束, 2012,24(1): 10-15.(JiangWeihua .Repetition rate pulsed power technology and its applications: (i) Introduction. High Power Laser and Particle Beams, 2012,24(1): 10-15)

[10] 曾曙光, 张彬, 孙年春,等 .啁啾匹配OPCPA方案用于消除超短激光脉冲的预脉冲[J]. 强激光与粒子束, 2012,24(2): 394-398. (Zeng Shuguang, Zhang Bin, Sun Nianchun, et al .Chirp-matching OPCPA scheme for eliminating pre-pulse of ultrashort laser pulse. High Power Laser and Particle Beams, 2012,24(2): 394-398)

[11] 丛培天, 邱爱慈 .快脉冲直线变压器气体开关技术[J]. 强激光与粒子束, 2012,24(6): 1263-1268.(Cong Peitian, Qiu Aici .Review on gas switches developed for fast linear transformer driver. High Power Laser and Particle Beams, 2012,24(6): 1263-1268)

[12] 郭建增, 刘铁根, 池伟,等 .大口径精密光学调整架的优化设计[J].强激光与粒子束, 2013,25(2): 301-304.(Guo Jianzeng, Liu Tiegen, Chi Wei, et al .Optimization and test of optical precision mount with large aperture. High Power Laser and Particle Beams, 2013,25(2): 301-304)

[13] Dekel E, Eliezer S. Measurements of laser driven spallation in tin and zinc using an optical recording velocity interferometer system[J]. Journal of Applied Physics, 1999, 86(8): 4242-4248.

[14] Zhigilei LV, Garrison B J. Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement irradiation regimes[J]. Journal of Applied Physics, 2000, 88(3): 1281-1298.

[15] Lai W S, Liu B X. Lattice stability of some Ni-Ti alloy phases versus their chemical composition and disordering[J] Journal of Physics: Condensed Matter, 2000, 12(5): L53-L60.

[16] Li J H, Dai X D, Liang S H, et al. Interatomic potentials of the binary transition metal systems and some applications in materials physics[J]. Physics Reports, 2008, 455(1/3): 1-134.

[17] 王新林,吴鹤.热物性参量对飞秒激光烧蚀金属影响的分子动力学模拟[J].光子学报,2009,38(12):3052-3056.(Wang Xinlin, Wu He .Influence of thermophysical parameters by femtosecond laser ablation of metals: molecular dynamics simulation. Acta Photonica Sinca, 2009,38(12):3052-3056)

[18] Schfer C, Urbassek H M, Zhigilei L V, et al. Pressure-transmitting boundary conditions for molecular-dynamics simulations[J]. Computational Materials Science, 2002, 24(4): 421-429.

[19] Cheng Changrui, Xu Xianfan. Mechanisms of decomposition of metal during femtosecond laser ablation[J]. Physical Review B, 2005, 72: 165415.

唐一波, 陈冰, 陈志勇, 朱卫华, 李月华, 王新林. 飞秒激光烧蚀镍钛形状记忆合金的蚀除机理[J]. 强激光与粒子束, 2014, 26(9): 091025. Tang Yibo, Chen Bing, Chen Zhiyong, Zhu Weihua, Li Yuehua, Wang Xinlin. Mechanism of femtosecond laser ablating NiTi shape memory alloy[J]. High Power Laser and Particle Beams, 2014, 26(9): 091025.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!