光学学报, 2011, 31 (4): 0412010, 网络出版: 2011-03-30   

共轭傅里叶变换校正成像光谱重构

Fourier Conjugate Correction Spectral Reconstruction for Fourier-Transform Spectrometer
作者单位
南京理工大学电子工程与光电技术学院, 江苏 南京 210094
摘要
傅里叶变换干涉成像光谱仪的光谱重构过程主要基于光源光谱和其对应干涉图的傅里叶变换对关系。采用傅里叶变换或余弦傅里叶变换方法可完成重构,但该两种方法由于没有消除变换过程中由引入相位信息和边界条件而产生的误差,会给光谱重构精度尤其是光谱强度重构精度造成负面影响。针对该问题,提出了一种针对傅里叶变换干涉成像光谱仪的共轭校正光谱重构方法,利用傅里叶变换的共轭性质,首先对预处理后的干涉图作共轭对称,然后采用傅里叶变换求得共轭光谱项及共轭校正项,再通过这两项校正得到真实光谱。经仿真和利用氦灯进行实验,可以验证,相对传统的光谱重构方法,该方法兼顾了干涉图和光谱图的实数域问题,同时也解决了余弦傅里叶变换的边界条件问题,采用重构光谱与定标光谱差值的均方根值进行评价,相比于定标光谱,该方法的重构光谱频率一致性和强度一致性均优于0.1%,较之传统方法,其对于光谱强度的重构精度一致性可提高5%,对傅里叶变换成像光谱仪的光谱重构方法研究工作具有指导意义。
Abstract
The spectral reconstruction theory of Fourier-transform imaging spectrometer is based on the Fourier-transform relationship between the spectrum of the source and the interferogram so that the spectral reconstruction can be simply achieved by using Fourier transform or Fourier cosine transform. However, the traditional Fourier transform solution is carried out in the complex-number field and the result is also a complex-number sequence. To acquire the real-number reconstructed spectrum, people usually use the real part or the absolute magnitude of the transformation result as the reconstructed spectrum, which will introduce in an extra-phase to the spectrum and lead to inaccuracy of reconstructed spectral intensity. Although reseachers use Fourier cosine transform to avoid the extra-phase problem effectively, this solution has a boundary condition problem which cannot be avoid and may also lead to inaccuracy of reconstructed spectral intensity. To solve the problem, on the base of the analysis of traditional reconstruction solutions, an improved spectral reconstruction solution based on Fourier conjugate correction (FCC) for Fourier-transform spectrometer is developed and discussed. Firstly the conjugated symmetrical form of the interferogram sequence is created by the use of the original interferogram captured, and then the conjugated symmetrical spectrum and the correction element can be acquired by carrying out Fourier transform to the sequence. By using the conjugated symmetrical spectrum and the correction element, the real-number spectrum sequence can be calculated. By carrying out both the simulation and the experiment using helium lamp, it can be concluded that the FCC solution can avoid either the extra-phase problem caused by discrete Fourier transform (DFT) solution or the boundary condition caused by discrete Fourier cosine transform (DCT) solution effectively and improve the reconstructed spectral intensity accuracy.
参考文献

[1] . V. Loewenstein. The history and current status of Fourier transform spectroscopy[J]. Appl. Opt., 1966, 5(5): 845-854.

[2] . Thurman, James R. Fienup. Fizeau Fourier transform imaging spectroscopy:missing data reconstruction[J]. Opt. Express, 2008, 16(9): 6632-6645.

[3] . Glenn Sellar, J. Bruce Rafert. Fourier-transform imaging spectrometer with a single toroidal optic[J]. Appl. Opt., 1995, 34(16): 2931-2933.

[4] . Kawata, K. Minami, S. Minami. Superresolution of Fourier transform spectroscopy data by the maximum entropy method[J]. Appl. Opt., 1983, 22(22): 3593-3598.

[5] . Luc, S. Gerstenkorn. Fourier transform spectroscopy in the visible and ultraviolet range[J]. Appl. Opt., 1978, 17(9): 1327-1331.

[6] . C. Teng, B. S. H.Rayce. Quantitative Fourier transform IR photoacoustic spectroscopy of condensed phases[J]. Appl. Opt., 1982, 21(1): 77-80.

[7] Leonid Alekseyev, Evgenii Narimanov, Jacob Khurgin. Super-resolution imaging using spatial Fourier transform infrared spectroscopy[C]. International Quantum Electronics Conference, Nanophotonics and Metamaterial SymposiumⅠ2009, 5

[8] . . Spectral artifacts from non-uniform samples analyzed by terahertz time-domain spectroscopy[J]. Opt. Express, 2009, 17(13): 10841-10848.

[9] . Selim Unlu. Time-domain surface profile imaging via a hyperspectral Fourier transform spectrometer[J]. Opt. Lett., 2008, 33(12): 1368-1370.

[10] 江毅. 光纤白光干涉测量术新进展[J]. 中国激光, 2010, 37(6): 1413~1420

    Jiang Yi. Progress in fiber optic white-light interferometry [J]. Chinese J. Lasers, 2010, 37(6): 1413~1420

[11] . Zhao, J-M. Mariotti, V. Conde du Forsto et al.. Infrared single-mode fiber-optic Fourier-transform spectrometry and double Fourier interferometry[J]. Appl. Opt., 1996, 35(16): 2897-2901.

[12] 李苏宁, 朱日宏, 沈华. Sagnac棱镜对旋对光谱仪光谱分辨率影像的校正方法[J]. 中国激光, 2010, 37(3): 652~657

    Li Suning, Zhu Rihong, Shen Hua. Correction effect to spectral resolution of spectrometer caused by counter rotating of Sagnac prism[J]. Chinese J. Lasers, 2010, 37(3): 652~657

[13] . Compact imaging spectrometer combining Fourier transform spectroscopy with a Fabry-Perot interferometer[J]. Opt. Express, 2009, 17(10): 8319-8331.

[14] . Interpolation of spectral data using shift theorem of the discrete Fourier transform[J]. Appl. Spectroscopy, 1997, 51(8): 1179-1184.

[15] . Heintzmann, K. A. Lidke, T. M. Jovin. Double-pass Fourier transform imaging spectroscopy[J]. Opt. Express, 2004, 12(5): 753-763.

[16] 陈立武. CE-1成像光谱仪工程化光学技术理论研究[D]. 西安:中国科学院西安光学精密机械研究所, 2006. 27~35

    Chen Liwu. The Theoretical Study of the Optical Technology of the Engineerization of the Interference Imaging Spectrometer of the CE-1 Satellite[D]. Xi′an: Xi′an Institute of Optics and Precision Mechanics of Chinese Academy of Science, 2006. 27~35

[17] 金锡哲. 干涉成像光谱技术研究[D]. 长春:中国科学院长春光学精密机械与物理研究所, 2000. 27~35

    Jin Xizhe. The Study On Imaging Fourier Transform Spectroscopy Technology[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science, 2000. 29~42

[18] 刘勇, 巫建东, 朱灵 等. 光纤傅里叶变换光谱仪光谱复原技术研究[J]. 光学学报, 2009, 29(6): 1697~1700

    Liu Yong, Wu jiandong, Zhu Ling et al.. Spectral recovery in fiber Fourier transform spectrometer[J]. Acta Optica Sinica, 2009, 29(6): 1697~1700

[19] Wlodzimierz Pogribuy, Marcin Drechny. Discrete cosing transform using modified DPCM[C]. SPIE, 2004, 5484: 653~658

[20] . Optical Fourier transform techniques for advanced Fourier spectroscopy systems[J]. Appl. Opt., 1980, 19(12): 2034-2037.

[21] Chunjun Zheng, Peng Han, Hongsen Chang. Four-quadrant spatial phase-shifting Fourier transform digital holography for recording of cosine transform coefficients[J]. Chin. Opt. Lett., 2006, 4(3): 145~147

[22] . N. Ruckmongathan. Discrete cosine transform for driving liquid crystal displays[J]. Journal of Disp. & Technology, 2009, 5(7): 243-249.

[23] B. G. Sherlock, Y. P. Kakad, A. Shukla. Rapid update of odd DCT and DST for real-time signal processing[C]. SPIE, 2005, 5809: 464~471

[24] Robert Reeves. New shift, scaling and derivative properties for the DCT[C]. SPIE, 1999, 3653: 418~428

[25] Subhash Balam, Dan Schonfeld. New algorithm for computation of DCT through pyramidal addition[C]. SPIE, 2005, 5683: 208~217

[26] . . Discrete cosine transform-based shift estimation for fringe pattern profilometry using a generalized analysis model[J]. Appl. Opt., 2006, 45(25): 6560-6567.

[27] Gholam-Al, Hossein-Zadeh, Hamid Soltanian-Zadeh. DCT acquisition and reconstruction of MRI[C]. SPIE, 1998, 3338: 398~407

李苏宁, 朱日宏, 高志山, 李建欣. 共轭傅里叶变换校正成像光谱重构[J]. 光学学报, 2011, 31(4): 0412010. Li Suning, Zhu Rihong, Gao Zhishan, Li Jianxin. Fourier Conjugate Correction Spectral Reconstruction for Fourier-Transform Spectrometer[J]. Acta Optica Sinica, 2011, 31(4): 0412010.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!